The pythagorean theorem states that if a triangle is a right triangle, then the sum of the squares of the legs of the triangle is equal to the square of the hypotenuse or a² + b² = c².
The converse of the pythagorean theorem on the other hand states that if the sum of the squares of 2 sides of a triangle is equal to the square of the third side or a² + b² = c², then the triangle is a right triangle.
The converse switches the order of the <em>if</em> and <em>then</em> statements.
On the whiteboard, I have also written it.
Image provided.
Answer:
Step-by-step explanation:
It's shifted left 2 units and down 5 units.
To find the point on the graph of g, we use the horizontal shift for the x-coordinate 4 to get 4–2=2, and the vertical shift for the y-coordinate –3 to get –3–5=–8.
Answer:
5.1
Step-by-step explanation:
Compounded Annually:
A=P(1+r)^t
A=P(1+r)
t
A=27200\hspace{35px}P=20000\hspace{35px}r=0.062
A=27200P=20000r=0.062
Given values
27200=
27200=
\,\,20000(1+0.062)^{t}
20000(1+0.062)
t
Plug in values
27200=
27200=
\,\,20000(1.062)^{t}
20000(1.062)
t
Add
\frac{27200}{20000}=
20000
27200
=
\,\,\frac{20000(1.062)^{t}}{20000}
20000
20000(1.062)
t
Divide by 20000
1.36=
1.36=
\,\,1.062^t
1.062
t
\log\left(1.36\right)=
log(1.36)=
\,\,\log\left(1.062^t\right)
log(1.062
t
)
Take the log of both sides
\log\left(1.36\right)=
log(1.36)=
\,\,t\log\left(1.062\right)
tlog(1.062)
Bring exponent to the front
\frac{\log\left(1.36\right)}{\log\left(1.062\right)}=
log(1.062)
log(1.36)
=
\,\,\frac{t\log\left(1.062\right)}{\log\left(1.062\right)}
log(1.062)
tlog(1.062)
Divide both sides by log(1.062)
5.1116317=
5.1116317=
\,\,t
t
Use calculator
t\approx
t≈
\,\,5.1
5.1
Answer: ummmmmmm
Step-by-step explanation: teeeeeheeee
idk
GIBE MEH A TANKS