Answer:
6.32s
Explanation:
Given parameters:
Length of track and distance covered = 200m
Acceleration = 10m/s²
Unknown:
Time taken to cover the track = ?
Solution:
To solve this problem, we apply one of the motion equations as shown below:
S = ut +
at²
S is the distance covered
t is the time taken
a the acceleration
u is the initial velocity
The initial velocity of Superman is 0;
So;
S =
at²
200 =
x 10 x t²
200 = 5t²
t² = 40
t = 6.32s
Answer:
- Decreasing the resistance
- Using a shorter length
- Using a smaller area wire
Explanation:
Formula for conductance in wires is;
G = 1/R
Where;
G is conductance
R is resistance
This means that increasing the resistance leads to a larger denominator and thus a smaller conductance but to decrease the denominator means larger conductance.
Thus, to increase the conductance, we have to decrease the resistance.
Resistance here has a formula of;
R = ρL/A
Where;
ρ is resistivity
L is length of wire
A is area
Thus, to decrease the resistance, we will have to use a shorter length and smaller area of wire.
Answer:
eksqijakojqnozjzbw.wlisjaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Explanation:
We can use the equation for kinetic energy, K=1/2mv².
Your given variables are already in the correct units, so we can just plug in the variables and solve for v.
K = 1/2mv²
16 = 1/2(2)v²
16 = (1)v²
√16 = v
v = 4 m/s
Therefore, the velocity of a 2 kg mass with 16 J of kinetic energy is 4 m/s.
Hope this is helpful!
Answer:
Fd
Explanation:
Work is force times distance. If you push on an object really hard but it does not budge, you have still performed no work on it, because anything times zero is still zero.