Answer:
v ’= 21.44 m / s
Explanation:
This is a doppler effect exercise that changes the frequency of the sound due to the relative movement of the source and the observer, the expression that describes the phenomenon for body approaching s
f ’= f (v + v₀) / (v-
)
where it goes is the speed of sound 343 m / s, v_{s} the speed of the source v or the speed of the observer
in this exercise both the source and the observer are moving, we will assume that both have the same speed,
v₀ = v_{s} = v ’
we substitute
f ’= f (v + v’) / (v - v ’)
f ’/ f (v-v’) = v + v ’
v (f ’/ f -1) = v’ (1 + f ’/ f)
v ’= (f’ / f-1) / (1 + f ’/ f) v
v ’= (f’-f) / (f + f’) v
let's calculate
v ’= (3400 -3000) / (3000 +3400) 343
v ’= 400/6400 343
v ’= 21.44 m / s
Answer: 4.50*10^-6T (0.00000450071T)
Explanation: A current carrying conductor has been knowing to generate a specific amount of magnetic field.
This is given by the Bio-savart law (mathematical).
The Bio-savart law is a mathematical equation that gives the value of strength of the magnetic field created by a current carrying conductor.
B=(Uo* I) /2πr
Where
B= strength of magnetic field
Uo = magnetic permeability in free space = 1.257 *10^-6
r = distance between current carrying conductor and any reference point.
By doing the neccesary algebra, we have
B=(1.257 *10^-6 * 180)/ (2 * 3.142 * 8)
B= 2.2626 *10^-4 / 50.2857
B=4.5 * 10^-6T (0.00000450071T)
Answer:
ΔT = 302 °c
Explanation:
mass (m) = 4.6 g = 0.0046 kg
velocity (v) = 278 m/s
specific heat of lead (c) = 128 J/kg. °c
kinetic energy = 0.5 mx 
kinetic energy = 0.5 x 0.0046 x 
kinetic energy = 177.8 J
since all the kinetic energy is converted to thermal energy,
kinetic energy = thermal energy (E) = 177.8 J
thermal energy = m x c x ΔT
where ΔT is the temperature change
177.8 = 0.0046 x 128 x ΔT
ΔT = 177.8 / 0.59
ΔT = 302 °c
A. Earth, Moon, Sun , because the earth is in front of the moon and the moonis in front of the sun blocking it a little bit.
This is a tough one.
In A, B, and C, there are various routes to get from one end to the other end through 2 or 3 capacitors.
D is the only configuration where it's possible to get from one end to the other through only 1 of them.
I'm not totally confident, but I think D is the one that's not like the others.