1) Force = m*a = 1.00 g * (1kg / 1000 g) * 225 m/s^2 = 0.225 N
2) Charge
Force = K (charge)^2 /(distance)^2 => charge = √ [Force * distance^2 / k]
k = 9.00 * 10^9 N*m^2 / C^2
charge = √ [0.225 N * (0.02 m)^2 / 9.00* 10^9 N*m^2 / C^2 ]
charge = 0.0000001 C = 0.0001 mili C
<span>1. It must be an object which independently orbits the Sun (this means moons can't be considered planets, since they orbit planets)
2. It must have enough mass that its own gravity pulls it into a spheroidal shape.
3. </span><span>It must be large enough to "dominate" its orbit (i.e. its mass must be much larger than anything else which crosses its orbit).</span>
The masses amount of a proton and neutron are 1.0087 and 1.0073 amu respectively.
<h3>What is a Proton?</h3>
This is defined as sub atomic particle which is positively charged and is present in the nucleus while the neutron is also a particle present in the nucleus but has a neutral charge.
Electrons on the other hand are found outside the nucleus and are negatively charged. It is the sub atomic particle which is actively involved in a chemical reaction.
The masses of neutron and proton are 1.0087 and 1.0073 amu respectively and was discovered by scientists thereby making it the most appropriate choice.
Read more about Proton and Neutron here brainly.com/question/237857
#SPJ1
Both verbs come from Olde English.
That's why everybody clearly understood their meaning until
a hundred years ago, but nobody understands them now.
"Waxing" = growing
For two weeks after the New Moon, it's growing toward Full.
First it's a waxing crescent for a week, then it's waxing gibbous.
"Waning" = shrinking
For two weeks after the Full Moon, it's shrinking toward New.
First it's waning gibbous for a week, then it's a waning crescent.
Answer:
thermal energy
Friction does negative work and removes some of the energy the person expends and converts it to thermal energy. The net work equals the sum of the work done by each individual force. The forces acting on the package are gravity, the normal force, the force of friction, and the applied force.
Explanation: