Answer: Before the jump, the snowboarder would carry potential energy.
During the jump he will carry kinetic energy.
And after the jump, assuming hes at a full stop, he will carry potential energy once again.
Answer:
The object will travel 675 m during that time.
Explanation:
A body moves with constant acceleration motion or uniformly accelerated rectilinear motion (u.a.r.m) when the path is a straight line, but the velocity is not necessarily constant because there is an acceleration.
In other words, a body performs a u.a.r.m when its path is a straight line and its acceleration is constant. This implies that the speed increases or decreases uniformly.
In this case, the position is calculated using the expression:
x = xo + vo*t + ½*a*t²
where:
- x0 is the initial position.
- v0 is the initial velocity.
- a is the acceleration.
- t is the time interval in which the motion is studied.
In this case:
- x0= 0
- v0= 0 because the object is initially stationary
- a= 6

- t= 15 s
Replacing:
x= 0 + 0*15 s + ½*6
*(15s)²
Solving:
x=½*6
*(15s)²
x=½*6
*225 s²
x= 675 m
<u><em>
The object will travel 675 m during that time.</em></u>
Resultant force= (2*6^2)^(1/2)
=8.5m/s
answer is B.
<span>5.82 x 10-49 joules7.62 x 10-19 joules8.77 x 10-12 joules1.09 x 10-12<span> joules </span><span>answer is b</span></span>
Answer:
A. Light acts as particles, causing electrons on the surface it strikes to be destroyed.
Explanation:
- The photoelectric effect is a phenomenon that occurs when light shined onto a metal surface causes the ejection of electrons from that metal. It was observed that only certain frequencies of light are able to cause the ejection of electrons.