Ph= - log [H+] = -log 1.00× 10-7 = -(log 1 + log 10-7) = -( 0 + (-7log 10) = -( -7) = 7
According to Bronsted-Lowry reaction- an acid is any substance that donates a proton (H+ ion) to another substance hence these two substance are acid aspirin (acetylsalicyclic acid) and hydrochloric acid (HCl). And there are two pairs - an acid with a corresponding conjugate base and a base with a corresponding conjugate acid. These pairs are called conjugate acid-base pairs.
Answer:
a) ΔGº= -49,9 KJ/mol = - 50 KJ/mol
b) The reaction goes to the right to formation of products
c) ΔG= 84,42 KJ/mol. The direction is to reactive, to the left
Explanation:
a) ΔGº= - RTLnKf
You need to convert Cº to K. 25ºC=298K
Then, ΔGº= - 3,814 J/molK * 298K* Ln(5.6 *10^8)= - 49906 J/mol = -49,9 KJ/mol = - 50 KJ/mol
b) The ΔGº < 0, that means the direct reaction is spontaneous when te reactive and products are in standard state. In other words the reaction goes to the right, to formation of products
c) The general ecuation for chemical reaction is aA + bB → cD + dD. Thus
ΔG=ΔGº + RTLn (([C]^c*[D]^d)/[A]^a*[B]^b)
In this case,
ΔG=ΔGº + RTLn ([Ni(NH3)62+] / [Ni2+]*[NH3]^6 )= 84417 J/mol =84,42 KJ/mol
ΔG >0 means the reaction isn't spontaneous in the direction of the products. Therefore the direction is to reactive, to the left
The correct option is A.
A chemical reaction is said to have reached an equilibrium stage if the rate of reaction of the forward reaction is equal to the rate of reaction of the reverse reaction. Two way arrows are usually used to depict equilibrium reactions. These arrows indicate that the chemical reaction can move both ways. At the equilibrium point the concentrations of both the reactants and the products are equal.