Average rate of change means find the slope of the secant line. So if there is a function f(x) and you want to find the average R.O.C over the interval [a,b], it would be (f(b)-f(a))/(b-a)
1. (f(3)-f(1))/(3-1)= (0-(-2))/2= 1, so D.
2. Same concept; (8-4)/(3-1)=2, so A.
3. Again, (39-(-1))/5= 8, B.
Answer:
4
Step-by-step explanation:
420 divided by 98 is 4.28571428571, therefore rounding would make the answer 4!
the answer you're looking for, rounded to the nearest thousandth, is 0.006 and we get that answer because we must round 0.0057 to the nearest thousandth, meaning that we must look at the seven, and realize that the seven tells us that the 5 is supposed to be a 6 because we are rounding to the nearest thousandth. So the answer is 0.006 I hope that this helps!
(3 cos x-4 sin x)+(3sin x+4 cos x)=5
(3cos x+4cos x)+(-4sin x+3 sin x)=5
7 cos x-sin x=5
7cos x=5+sin x
(7 cos x)²=(5+sinx)²
49 cos²x=25+10 sinx+sin²x
49(1-sin²x)=25+10 sinx+sin²x
49-49sin²x=25+10sinx+sin²x
50 sin² x+10sinx-24=0
Sin x=[-10⁺₋√(100+4800)]/100=(-10⁺₋70)/100
We have two possible solutions:
sinx =(-10-70)/100=-0.8
x=sin⁻¹ (-0.8)=-53.13º (360º-53.13º=306.87)
sinx=(-10+70)/100=0.6
x=sin⁻¹ 0.6=36.87º
The solutions when 0≤x≤360º are: 36.87º and 306.87º.
Answer:
I think the answer is 90 degrees
Step-by-step explanation: