Answer:
The acceleration of an object as produced by a net force is directly proportional to the magnitude of the net force, in the same direction as the net force, and inversely proportional to the mass of the object
The ocular lens or eyepiece lens
The distance traveled by the sprinter in meters is determined as 1.88 m.
<h3>Acceleration of the sprinter</h3>
The acceleration of the sprinter is the rate of change of velocity of the sprinter with time.
The acceleration of the sprinter is calculated as follows;
Apply Newton's second law of motion as follows;
F = ma
a = F/m
where;
- F is the applied force by the sprinter
- m is mass of the sprinter
- a is acceleration of the sprinter
a = 693 N / 64 kg
a = 10.83 m/s²
<h3>Distance traveled by the sprinter</h3>
The distance traveled by the sprinter is calculated as follows;
s = ut + ¹/₂at²
where;
- u is initial velocity = 0
s = ¹/₂at²
where;
- t is time of motion
- a is acceleration
s = (0.5)(10.83)(0.59²)
s = 1.88 m
Thus, the distance traveled by the sprinter in meters is determined as 1.88 m.
Learn more about distance here: brainly.com/question/2854969
#SPJ1
Only in metamorphic rocks does this occur.
Because of the power of the light it is very strong so that is why light reaches all the way to earth