Answer:
Zero
Explanation:
As we know that the force and the motion direction should always be perpendicular to each other due to which the work is done by static friction be zero
Therefore
F.dcos(theta) = F.d cos(90) = 0
Hence, the work done by static friction is zero
Therefore the same is to be considered
When we see the words "Which statement ... ", we know right away that there
will be a list of choices, and we're expected to select our answer from that list.
Strangely, the list of answer-choices for this question has been lost.
Similarly, when we see the words "The picture shows ... ", it's hard to fight
the impulse to look around. In the present situation, <em>that's</em> missing too.
If the diver is just standing there, then the reaction force provided by the cliff
against his feet must be exactly equal to his weight. If the vertical forces acting
on the soles of his feet were not balanced, then his feet would be accelerating
vertically.
His weight is (mass) x (gravity) =
(93 kg) x (9.8 m/s²) = <em>911.4 newtons</em> (about 205 pounds) .
That's also the strength of the upward reaction force provided by the cliff.
Because its so far, and the only telescope we had to see the planets stopped working.
We’re all pretty active and do a lot
Answer: not according with truth or fact/ incorrect.
Explanation: