Answer: Option (b) is the correct answer.
Explanation:
In a chemical reaction, the bonds between the reactant molecules tend to break leading to the formation of new bonds to produce products.
So, in order to break the bonds between the reactant molecules, energy is required to overcome the attraction between the atoms.
To form new bonds, energy gets released when two atoms come closer to each other. Hence, formation of bond releases energy.
As in the given reaction it is shown that
< 0, that is, enthalpy change is negative. Hence, energy is released as it is an exothermic process.
Thus, we can conclude that the statement energy released as the bonds in the reactants is broken is greater than the energy absorbed as the bonds in the products are formed, is true about the bond energies in this reaction.
Answer: The percent yield of the reaction is 77.0 %
Explanation:




According to stoichiometry:
2 moles of
produces = 2 moles of 
2.18 moles of
is produced by=
of 
Mass of
=
percent yield =
The volume of 1.00 lb of mercury metal : 33.352 ml
<h3>Further explanation </h3>
Density is a quantity derived from the mass and volume
Density is the ratio of mass per unit volume
Density formula:

ρ = density
m = mass
v = volume
Density of metal(mercury) = 13.6 g/ml
mass of mercury : 1 lb = 453,592 g
So the volume :

If we let x be the number of sample which contains the atoms of carbon (C). Given that according to study, the amount of atoms in carbon sample that are C-13 atoms is 1.07%, the mathematical set-up that would represent the sample is,
= (0.0107)(C)