Answer:
V₂ = 0.6 V.
Explanation:
- We can use the general law of ideal gas: <em>PV = nRT.</em>
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
- If n is constant, and have different values of P, V and T:
<em>(P₁V₁T₂) = (P₂V₂T₁).</em>
<em></em>
V₁ = V, P₁ = P, T₁ = T.
V₂ = ??? V, P₂ = 1.25 P, T₂ = 0.75 T.
<em>∴ V₂ = (P₁V₁T₂)/(P₂T₁) =</em> (P)(V)(0.75 T)/(1.25 P)(T)<em> = 0.6 V.</em>
We can set up an ICE table for the reaction:
HClO H+ ClO-
Initial 0.0375 0 0
Change -x +x +x
Equilibrium 0.0375-x x x
We calculate [H+] from Ka:
Ka = 3.0x10^-8 = [H+][ClO-]/[HClO] = (x)(x)/(0.0375-x)
Approximating that x is negligible compared to 0.0375 simplifies the equation to
3.0x10^-8 = (x)(x)/0.0375
3.0x10^-8 = x2/0.0375
x2 = (3.0x10^-8)(0.0375) = 1.125x10^-9
x = sqrt(1.125x10^-9) = 0.0000335 = 3.35x10^-5 = [H+]
in which 0.0000335 is indeed negligible compared to 0.0375.
We can now calculate pH:
pH = -log [H+] = - log (3.35 x 10^-5) = 4.47
1 inch is equivalent to 0.0254 meters. To find the answer, multiply the number of inches by 0.0254.
349.5 x 0.0254 = 8.8773
Answer:
The reaction when the Borane (BH3) is add to an alkene and form an alkylborane is shown below.
Explanation:
The boron of the borane does not have extra electron pairs, in this way the double bond of the alkene attacks the boron and the hydrogen belonging to the borane adheres to the carbon that is more substituted, thus forming an alkyl borane.
Here is your answer

REASON:
Elements which have 4 valence electrons are generally metalloids.
The metalloids show the properties of both metals and non-metals.
We know that,
no. of protons= Atomic number
So,
Atomic no.= 32
Hence,
The element is Germanium which is a metalloid with 4 valence electrons and has 32 protons in nucleus of each atom because it has atomic no. 32
HOPE IT IS USEFUL