Answer:
m=146.277kg which is rounded to 146kg
Explanation:
Remember that F=ma
But F represents not 250N, but 250cos(35)N since the force is being pulled above the horizontal.
So 250cos(35)=204.7880111 approximately, and since a=1.4m/s^2, we have 204.7880111=m(1.4m/s^2). Then we divide both sides by the acceleration to get the mass. So m=146.2771508kg which the nearest number is 146kg
Mass is always in kg, unless stated otherwise.
The net force acting on the car is 65 N to the left
The net force acting on an object is simply defined as the resultant force acting on the object.
From the question given, we obtained the following data:
- Force applied to the right (Fᵣ) = 250 N
- Force applied to the left (Fₗ) = 315 N
- Net force (Fₙ) =?
The net force acting on the car can be obtained as follow:
Fₙ = Fₗ – Fᵣ
Fₙ = 315 – 250
<h3>Fₙ = 65 N to the left </h3>
Therefore, the net force acting on the car is 65 N to the left
Learn more on net force: brainly.com/question/19549734
Well when you eat you get energy and then you use it to ride up the hill sorry I don't know how it is classified
A gram molecule<span> of a </span>gas<span> at </span>127<span>°C </span>expands isothermally until its volume<span> is </span>doubled<span>. </span>Find<span> the </span>amount<span>of </span>work done<span> and </span>heat absorbed<span>.</span>
Answer:
d ) is the answer.
Explanation:
Let M be the mass and R be the radius of each of ball , hoop and disc.
kinetic energy of sphere - 1/2 MV² + 1/2 I ω² ,ω is angular velocity and
V = ωR
kinetic energy of sphere - 1/2 MV² + 1/2 x 2/5 MR² ω²
= 1/2 MV² + 1/5 MR² ω²
MV² ( 1/2 + 1/5 )
= .7 MV²
kinetic energy of Disk - 1/2 MV² + 1/2 I ω² ,ω is angular velocity and
V = ωR
kinetic energy of Disk - 1/2 MV² + 1/2 x 1/2 MR² ω²
= 1/2 MV² + 1/4 MR² ω²
MV² ( 1/2 + 1/4 )
= .75 MV²
kinetic energy of Hoop - 1/2 MV² + 1/2 I ω² ,ω is angular velocity and
V = ωR
kinetic energy of hoop - 1/2 MV² + 1/2 MR² ω²
= 1/2 MV² + 1/2 MR² ω²
MV² ( 1/2 + 1/2 )
= MV²
Kinetic energy is largest in case of hoop and least in case of sphere . So hoop will go up to the highest point and sphere will go to a height which will be least among the three.