1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
3241004551 [841]
3 years ago
14

Show that the 1 and 3 laws of motion are collection of 2 law of motion ?

Physics
1 answer:
Leya [2.2K]3 years ago
3 0

Answer:

Yes, va

Explanation:

You might be interested in
True or False: The cycle of seasons on the Earth is caused by the tilt of the Earth on its axis toward and away from the Sun.
damaskus [11]

the correct answer is that it is True

8 0
2 years ago
"it was so cold yesterday that the temperature only reached 275." which temperature scale is being used? what would be the corre
kow [346]
Remembering back to science I believe that temperature is on the Kelvin scale. The corresponding temperature on the Celsius scale would be very close to zero degrees which is the freezing point. The corresponding temperature on the Fahrenheit scale would be 32 degree which again is the freezing point.
7 0
2 years ago
Read 2 more answers
Design a voltage divider to provide the following approximate voltages with respect to ground using a 30 V source: 8.18 V, 14.7
yarga [219]

Answer:

R₁ = 14.7 10³ Ω , R₂ = 8.18 10³ Ω ,  R₃ = 1.72 10³ Ω ,  R₄ = 5.4 10³ Ω    1/8 W resistor

Explanation:

For this exercise we must use a series circuit since the sum of the voltage on each resin is equal to the source voltage (V = 30 V)

Therefore we build a circuit with 4 resistors in series, in such a way that

   V = i R

let the voltage

1st resistance

         V = i R

         R₁ = V / i

         R₁ = 14.7 / 1 10⁻³

         R₁ = 14.7 10³ Ω

power is

        P = V i

        P = 14.7 1 10⁻³

        P = 14.7 10⁻³ W = 0.0147 W

a resistance of ⅛ W is indicated

2nd resistance

          R₂ = 8.18 / 1 10⁻³

          R₂ = 8.18 10³ Ω

Power

          P = 8.18 1 10⁻³

          P = 0.00818W

a 1/8 W resistor

3rd resistance

this resistance is calculated in such a way that

          V₁ + V₂ + V₃ = 24.6

          V₃ = 24.6 - V₁ -V₂

          V₃ = 24.6 - 14.7 - 8.18

          V₃ = 1.72 V

          R₃ = 1.72 / 1 10⁻³

          R₃ = 1.72 10³ Ω

           

power

          P = Vi

          P = 1.72 10⁻³

          P = 0.00172 W

a resistance of ⅛ W

To obtain the voltage of 24.6 we use this three resistors together

4th resistance

The value of this resistance is calculated so that the sum of all the voltages reaches the source voltage

           30 = V₁ + V₂ + V₃ + V₄

           V₄ = 30 - V₁ -V₂ -V₃

           V₄ = 30 -14.7 - 8.18 - 1.72

           V₄ = 5.4 V

          R₄ = 5.4 / 1 10⁻³

          R₄ = 5.4 10³ Ω

Power

         P = V i

         P = 5.4 10⁻³

         P = 0.0054 W

⅛ W resistance

The values ​​of these resistance are commercially

Let's check the consumption of the circuit

  R_total = R₁ + R₂ + R₃ + R₄

  R_total = (14.7 + 8.18 + 1.72 + 5.4) 10³

   R_total = 30 10³

the current circulating in the circuit is

     i = V / R_total

     i = 30/30 10³

     i = 1 10⁻³ A

therefore it is within the order requirement.

for connections see attached diagram

8 0
3 years ago
A projectile of mass m is launched with an initial velocity vector v i making an angle θ with the horizontal as shown below. The
sergeinik [125]
Angular momentum is given by the length of the arm to the object, multiplied by the momentum of the object, times the cosine of the angle that the momentum vector makes with the arm. From your illustration, that will be: 
<span>L = R * m * vi * cos(90 - theta) </span>

<span>cos(90 - theta) is just sin(theta) </span>
<span>and R is the distance the projectile traveled, which is vi^2 * sin(2*theta) / g </span>

<span>so, we have: L = vi^2 * sin(2*theta) * m * vi * sin(theta) / g </span>

<span>We can combine the two vi terms and get: </span>

<span>L = vi^3 * m * sin(theta) * sin(2*theta) / g </span>

<span>What's interesting is that angular momentum varies with the *cube* of the initial velocity. This is because, not only does increased velocity increase the translational momentum of the projectile, but it increase the *moment arm*, too. Also note that there might be a trig identity which lets you combine the two sin() terms, but nothing jumps out at me right at the moment. </span>

<span>Now, for the first part... </span>

<span>There are a few ways to attack this. Basically, you have to find the angle from the origin to the apogee (highest point) in the arc. Once we have that, we'll know what angle the momentum vector makes with the moment-arm because, at the apogee, we know that all of the motion is *horizontal*. </span>

<span>Okay, so let's get back to what we know: </span>

<span>L = d * m * v * cos(phi) </span>

<span>where d is the distance (length to the arm), m is mass, v is velocity, and phi is the angle the velocity vector makes with the arm. Let's take these one by one... </span>

<span>m is still m. </span>
<span>v is going to be the *hoizontal* component of the initial velocity (all the vertical component got eliminated by the acceleration of gravity). So, v = vi * cos(theta) </span>
<span>d is going to be half of our distance R in part two (because, ignoring friction, the path of the projectile is a perfect parabola). So, d = vi^2 * sin(2*theta) / 2g </span>

<span>That leaves us with phi, the angle the horizontal velocity vector makes with the moment arm. To find *that*, we need to know what the angle from the origin to the apogee is. We can find *that* by taking the arc-tangent of the slope, if we know that. Well, we know the "run" part of the slope (it's our "d" term), but not the rise. </span>

<span>The easy way to get the rise is by using conservation of energy. At the apogee, all of the *vertical* kinetic energy at the time of launch (1/2 * m * (vi * sin(theta))^2 ) has been turned into gravitational potential energy ( m * g * h ). Setting these equal, diving out the "m" and dividing "g" to the other side, we get: </span>

<span>h = 1/2 * (vi * sin(theta))^2 / g </span>

<span>So, there's the rise. So, our *slope* is rise/run, so </span>

<span>slope = [ 1/2 * (vi * sin(theta))^2 / g ] / [ vi^2 * sin(2*theta) / g ] </span>

<span>The "g"s cancel. Astoundingly the "vi"s cancel, too. So, we get: </span>

<span>slope = [ 1/2 * sin(theta)^2 ] / [ sin(2*theta) ] </span>

<span>(It's not too alarming that slope-at-apogee doesn't depend upon vi, since that only determines the "magnitude" of the arc, but not it's shape. Whether the overall flight of this thing is an inch or a mile, the arc "looks" the same). </span>

<span>Okay, so... using our double-angle trig identities, we know that sin(2*theta) = 2*sin(theta)*cos(theta), so... </span>

<span>slope = [ 1/2 * sin(theta)^2 ] / [ 2*sin(theta)*cos(theta) ] = tan(theta)/4 </span>

<span>Okay, so the *angle* (which I'll call "alpha") that this slope makes with the x-axis is just: arctan(slope), so... </span>

<span>alpha = arctan( tan(theta) / 4 ) </span>

<span>Alright... last bit. We need "phi", the angle the (now-horizontal) momentum vector makes with that slope. Draw it on paper and you'll see that phi = 180 - alpha </span>

<span>so, phi = 180 - arctan( tan(theta) / 4 ) </span>

<span>Now, we go back to our original formula and plug it ALL in... </span>

<span>L = d * m * v * cos(phi) </span>

<span>becomes... </span>

<span>L = [ vi^2 * sin(2*theta) / 2g ] * m * [ vi * cos(theta) ] * [ cos( 180 - arctan( tan(theta) / 4 ) ) ] </span>

<span>Now, cos(180 - something) = cos(something), so we can simplify a little bit... </span>

<span>L = [ vi^2 * sin(2*theta) / 2g ] * m * [ vi * cos(theta) ] * [ cos( arctan( tan(theta) / 4 ) ) ] </span>
3 0
2 years ago
Read 2 more answers
Glass does not transmit ultraviolet radiation. Suggest what happens to ultraviolet radiation when it is incident on glass. (1 ma
o-na [289]

Answer:

Most of UV radiation is stopped by glass & this is why you will not get sunburns behind a glass. The glass simply filters out the UV radiation that is responsible for the sunburns & protect your skins from these energetic & somewhat harmful radiation

Explanation:

4 0
1 year ago
Other questions:
  • you have two pendulums with cords that are exactly the same length. one is on earth (with an acceleration due to gravity of 9.81
    6·1 answer
  • When you sneeze, the air in your lungs accelerates from rest to 155 km/h in approximately 0.70 s . what is the acceleration of t
    7·1 answer
  • How do scientists learn about the brain.
    15·2 answers
  • If in 30 minutes Allex runs to a store that is 4 km away, what is her average speed in km/h? km/h
    12·2 answers
  • Weight measures:
    6·1 answer
  • For the following situations, describe the contact and non-contact forces that are involved.
    10·2 answers
  • Name three ways electricity can be produced.​
    10·1 answer
  • A horizontal wire is stretched with a tension of 98.4 N, and the speed of transverse waves for the wire is 406 m/s. What must th
    6·1 answer
  • A string attached to a kite was maintained at an angle of 65.0° with the ground. If 120 m of string was reeled in to return the
    8·1 answer
  • A projectile is fired in such a way that its horizontal range is equal to three times its maximum height. What is the angle of p
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!