Answer:
-24 m/s
Explanation:
mass of the bowling ball = 3 kg
time (t) = 0.3 seconds
Force = 24 N
initial velocity u = ???
We know that;
Force = mass × acceleration (a)
So;
24 = 3 × a
a = 24/3
a = 8 m/s²
Also;
From equation of motion; acceleration is given by the relation;

if v = 0
then ;

24 = 0- u
u = -24 m/s
Thus; the initial velocity of the bowling ball when it first touched the mattress = -24 m/s
The gravitational acceleration at any distance r is given by

where G is the gravitational constant, M the Earth's mass and r is the distance measured from the center of the Earth.
The Earth's radius is
, so the meteoroid is located at a distance of:

And by substituting this value into the previous formula, we can find the value of g at that altitude:

(3) 8.3 N/kg. The gravitational field strength at a point is the force per unit mass exerted on a mass placed at that point. So at the point where the Hubble telescope is, it is (9.1 x 10^4)N/(1.1 x 10^4 kg) = 8.3 N/kg
Fam
Answer: 40.650406504065 or 40 minutes and 39 seconds.
Explanation:
1 k = 1000m
race = 10000m
runner time = 10000 / 4.1
runner time = 2439.0243902439024 seconds
runner time = 2439.0243902439024/60 = 40.650406504065 or 40 minutes and 39 seconds.
Answer:
B. over the symbol.
Explanation:
vectors are represented with a symbol carrying an arrow head with also indicates direction