Answer: Our required probability would be 0.70.
Step-by-step explanation:
Since we have given that
Number of players = 14
Number of players have recently taken a performance enhancing drug = 3
Number of players have not recently taken a performance enhancing drug = 14-3=11
Number of members chosen randomly = 5
We need to find the probability that at least one of the tested players is found to have taken a performance enhancing drug.
P(Atleast 1) = 1 - P(none is found to have taken a performance enhancing drug)
So, P(X≥1)=1-P(X=0)

Hence, our required probability would be 0.70.
The algebraic expression x • y • z = y • x • z exhibits the transitive property. Transitive property is applied when rearranging the elements or numbers within a term such that the answer or value is still the same. Transitive property is useful in factoring procedure.
Answer:
(- 2, 4 )
Step-by-step explanation:
Given endpoints (x₁, y₁ ) and (x₂, y₂ ) , then the midpoint is
(
,
)
Here (x₁, y₁ ) = A (4, 6 ) and (x₂, y₂ ) = B (- 8, 2 )
midpoint = (
,
) = (
,
) = (- 2, 4 )
Answer:
C
Step-by-step explanation:
The fast way: Testing the options!
Teacher loving way:
An= d×n + A0
d= A4-A3=A5-A4=A6-A5...= 6
A3= 0 = 6×3 + A0
A0= -18
Then the equation is: An= 6n - 18
Answer:

Step-by-step explanation:
We have:

And we want to find B’(6).
So, we will need to find B(t) first. To do so, we will take the derivative of both sides with respect to x. Hence:
![\displaystyle B^\prime(t)=\frac{d}{dt}[24.6\sin(\frac{\pi t}{10})(8-t)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20B%5E%5Cprime%28t%29%3D%5Cfrac%7Bd%7D%7Bdt%7D%5B24.6%5Csin%28%5Cfrac%7B%5Cpi%20t%7D%7B10%7D%29%288-t%29%5D)
We can move the constant outside:
![\displaystyle B^\prime(t)=24.6\frac{d}{dt}[\sin(\frac{\pi t}{10})(8-t)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20B%5E%5Cprime%28t%29%3D24.6%5Cfrac%7Bd%7D%7Bdt%7D%5B%5Csin%28%5Cfrac%7B%5Cpi%20t%7D%7B10%7D%29%288-t%29%5D)
Now, we will utilize the product rule. The product rule is:

We will let:

Then:

(The derivative of u was determined using the chain rule.)
Then it follows that:
![\displaystyle \begin{aligned} B^\prime(t)&=24.6\frac{d}{dt}[\sin(\frac{\pi t}{10})(8-t)] \\ \\ &=24.6[(\frac{\pi}{10}\cos(\frac{\pi t}{10}))(8-t) - \sin(\frac{\pi t}{10})] \end{aligned}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cbegin%7Baligned%7D%20B%5E%5Cprime%28t%29%26%3D24.6%5Cfrac%7Bd%7D%7Bdt%7D%5B%5Csin%28%5Cfrac%7B%5Cpi%20t%7D%7B10%7D%29%288-t%29%5D%20%5C%5C%20%5C%5C%20%26%3D24.6%5B%28%5Cfrac%7B%5Cpi%7D%7B10%7D%5Ccos%28%5Cfrac%7B%5Cpi%20t%7D%7B10%7D%29%29%288-t%29%20-%20%5Csin%28%5Cfrac%7B%5Cpi%20t%7D%7B10%7D%29%5D%20%5Cend%7Baligned%7D)
Therefore:
![\displaystyle B^\prime(6) =24.6[(\frac{\pi}{10}\cos(\frac{\pi (6)}{10}))(8-(6))- \sin(\frac{\pi (6)}{10})]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20B%5E%5Cprime%286%29%20%3D24.6%5B%28%5Cfrac%7B%5Cpi%7D%7B10%7D%5Ccos%28%5Cfrac%7B%5Cpi%20%286%29%7D%7B10%7D%29%29%288-%286%29%29-%20%5Csin%28%5Cfrac%7B%5Cpi%20%286%29%7D%7B10%7D%29%5D)
By simplification:
![\displaystyle B^\prime(6)=24.6 [\frac{\pi}{10}\cos(\frac{3\pi}{5})(2)-\sin(\frac{3\pi}{5})] \approx -28.17](https://tex.z-dn.net/?f=%5Cdisplaystyle%20B%5E%5Cprime%286%29%3D24.6%20%5B%5Cfrac%7B%5Cpi%7D%7B10%7D%5Ccos%28%5Cfrac%7B3%5Cpi%7D%7B5%7D%29%282%29-%5Csin%28%5Cfrac%7B3%5Cpi%7D%7B5%7D%29%5D%20%5Capprox%20-28.17)
So, the slope of the tangent line to the point (6, B(6)) is -28.17.