A boy shooting a rubber band across the classroom -->
Elastic potential energy transformed into kinetic energy
<span>The initial energy is the energy stored in the muscles of the boy's arm, which is elastic potential energy. This is converted into motion of the rubber, therefore kinetic energy
A child going down a slide on a playground --> </span>Gravitational potential energy transformed into kinetic energy
On top of the slide, all the energy of the child is gravitational potential energy due to its height with respect to the ground (E=mgh). when it moves down the slide, this is converted into kinetic energy, because the child acquires a speed v (E=1/2 mv^2)
<span>
Rubbing your hands together to warm them on a cold day --> </span>Kinetic energy being transformed into thermal energy <span>
When rubbing hands, we are moving them (kinetic energy), and this energy raises the temperature of the hand's surface (thermal energy)
Turning on a battery operated light --> </span>
Chemical potential energy transformed into radiant energy <span>
A battery works by mean of chemical reactions (chemical potential energy), producing light (so, emitting energy by radiation, i.e. radiant energy)
Using a dc electric motor --> </span> Electrical energy transformed into kinetic energy<span>
A dc electric motor works using currents (so, electrical energy), and the energy produced can be used for example to accelerate a car (kinetic energy)
Using a gas power heater to warm a room --> </span>Chemical potential energy transformed into thermal energy
<span>A gas power heater burns gases (so, chemical reaction, i.e. chemical potential energy) to raise the temperature of the room (thermal energy)
Using a hand crank generator to produce electric current --> Kinetic energy transformed into electrical energy
In a hand-crank generator, the handle is being rotated (kinetic energy) in order to produce an electric current (electrical energy)
Using the light in your room that is plugged into the wall --> </span>Electrical energy transformed into radiant energy
<span>The lamp works by using electrical current flowing into a resistor (electrical energy) and it produces light, so it emits energy by electromagnetic radiation (radiant energy)
</span> <span>
</span>
Answer:
Right now I have three.
Explanation: Thanks for the points luv ^-^.
You'll hear that force called different things in different places. It
may be called "electromotive force", "EMF", "potential difference",
or "voltage".
It's just a matter of somehow causing the two ends of the wire
to have different electrical potential. When that happens, the
free electrons in the copper suddenly have a burning desire to
travel ... away from the end that's more negative, toward the end
that's more positive, and THAT's an "electric current".
As a wave moves through a medium, particles are displaced and return to their normal position after the wave passes.
Explanation:
A wave is a traveling disturbance that carries energy from one location to another. All waves move in straight lines outward and away from the source of a disturbance. Like the radiating circular ripples, the waves of water carry energy away from where a rock was dropped into the pond.
Waves can move as a single pulse or as a continuous series of waves, carrying energy away from its source. A pulse is a single disturbance, wave, or ripple that moves outward from the point of disturbance. A train of waves are many waves emitted over and over again from a single source.
As waves travel through matter, they will temporarily displace the molecules or particles in matter up-and-down or side-to-side. Waves move the energy but they do not carry the matter with them longitudinally as they move through matter. Once the disturbance passes, the medium will return to its original state or position.
Therefore, as the waves move through a medium, particles are displaced and return to their normal position after the wave passes.
<span>10 inches
You are at risk of serious injury if you sit less than 10 inches away from the steering wheel, because of the speed and force the airbag deploys at. This is also part of the reason why driving instructors now instruct you to hold the steering wheel from the lower parts, rather than the top, which can cause your thumbs to break if the air bag deploys.</span>