Answer:
A. The model was the result of hundreds of years of experiments.
Explanation:
Since it is not possible to visualize an atom in isolation, scientists have spent hundreds of years experimenting and creating atomic models, that is, images that serve to explain the constitution, properties and behavior of atoms.
The earliest who imagined the existence of the atoms were the Greek philosophers Leucippus and Democritus in about 450 BCE. According to them, everything would be formed by tiny indivisible particles. Hence the origin of the name "atom", which comes from the Greek a (no) and tome (parts).
But in the nineteenth century, some scientists began to conduct experimental tests increasingly accurate thanks to technological advances. Not only was it discovered that everything was actually made up of tiny particles, but it was also possible to understand more and more about the atomic structure.
Scientists used the information discovered by other scholars to develop the atomic model. In this way, the discoveries of one scientist were replaced by those of others. The concepts that were correct remained, but those that proved to be non-real were now abandoned. Thus, new atomic models were created. This series of discoveries of the atomic structure until arriving at the accepted models today was known like the evolution of the atomic model.
Answer:
0.4
Explanation:
F-Fr=ma where F is applied force, Fr is friction, m is mass and a is acceleration.
Since the mass is moving with a constant velocity, there's no acceleration hence
where N is the weight of object and \mu is coefficient of kinetic friction.
the subject
Substituting F for 8 N and N for 20 N
Therefore, coefficient of kinetic friction is 0.4
Answer:
acceleration, a = 9.8 m/s²
Explanation:
'A ball is dropped from the top of a building' indicates that the initial velocity of the ball is zero.
u = 0 m/s
After 2 seconds, velocity of the ball is 19.6 m/s.
t = 2s, v = 19.6 m/s
Using
v = u + at
19.6 = 0 + 2a
a = 9.8 m/s²
Answer:
354 m/s
Explanation:
For the second overtune (Third harmonic) of an open pipe,
λ = 2L/3................................ Equation 1
Where L = Length of the open pipe, λ = Wave length.
Given: L = 1.75 m.
Substitute into equation 1
λ = 2(1.75)/3
λ = 1.17 m.
From the question,
V = λf.......................... Equation 2
V = speed of sound in the room, f = frequency
Given: f = 303 Hz.
Substitute into equation 2
V = 1.17(303)
V = 353.5
V ≈ 354 m/s
Hence the right answer is 354 m/s
Answer:
Counterclockwise
explanation in attachment