1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Pani-rosa [81]
2 years ago
5

Ejection of Electrons from Hydrogen by Incident Photons Light of wavelength 80 nm is incident on a sample of hydrogen gas, resul

ting in electrons being ejected from the atoms. N.B. The energy of these photons is much smaller than the rest energy of the electron, so you don't need relativistic expressions. Assume that the photon is destroyed in this process, leaving only the electron moving away from a stationary hydrogen ion.
a. With the gas in thermal equilibrium at room temperature, what would be the maximum kinetic energy of ejected electrons?
b. When an intense light source of the same wavelength is shone on the gas sample, a small number of electrons with kinetic energy as much as 10.2 eV greater than you calculated in part a. Explain how this can be.
Physics
1 answer:
timofeeve [1]2 years ago
8 0

Answer:

a)   K_{max} = 1.9 eV = 3.04 10⁻¹⁹ J,b ) This means that some electrons are at the first excited level of the hydrogen atom, which is highly likely as the temperature rises.

Explanation:

a) To calculate the maximum kinetic energy of the expelled electrons let's use the relationships of the photoelectric effect

      K_{max}= h f - Φ

Where K is the kinetic energy, h the Planck constant that is worth 6.63 10⁻³⁴ Js, f the frequency and Φ the work function

The speed of light is related to wavelength and frequency

     c = λ f

Let's analyze the work function, it is the energy needed to start an electron from a metal, in this case to start an electron from a hydrogen atom its fundamental energy is needed, so

     Φ= E₀ = 13.6 eV

let's replace and calculate the energy of the incident photon

     E = h c / λ

     E = 6.63 10⁻³⁴ 3 10⁸/80 10⁻⁹

     E = 2,486 10⁻¹⁸ J

Let's reduce to eV

     E = 2,486 10⁻¹⁸ (1 eV / 1.6 10⁻¹⁹)

     E = 15.5 eV

Now we can calculate the kinetic energy

     K_{max}= h c / f - fi

      K_{max} = 15.5 -13.6

     K_{max} = 1.9 eV

b)     Extra energy = 10.2 eV

The total kinetic energy of electrons is

       Total kinetic energy = 1.9 +10.2 = 12.1 eV

For the calculation we are assuming that all the electors are in the hydrogen base state, but for temperatures greater than 0K some electors may be in some excited state, so less energy is needed to tear them out of hydrogen atom.

Let's analyze this possibility

      ΔE = E photon - Total kinetic energy electron

      ΔE = 15.5 - 12.1

      ΔE = 3.4 eV

If we use the Bohr ratio for the hydrogen atom

     E_{n} = 13.606 / n2

     n = √ 13.606 / En

     n = √ (13606 / 3.4)

     n = 2

This means that some electrons are at the first excited level of the hydrogen atom, which is highly likely as the temperature rises.

You might be interested in
A bicyclist of mass 60kg supplies 340W of power while riding into a 5 m/s head wind. The frontal area of the cyclist and bicycle
NikAS [45]

Answer:

87.1 mph

Explanation:

We are given that

Mass,m=60 kg

Power,P=340 W

Speed,v=5 m/s

Area,A=0.344 m^2

Drag coefficient,C_d=0.88

Coefficient of rolling resistance,\mu_r=0.007

Friction force,f=\mu_rmg=0.007\times 60\times 9.8=4.1 N

Where g=9.8 m/s^2

Let speed of cyclist=v'

Drag force,F_d=\frac{1}{2}\rho_{air}AC_dv^2

Density of air,\rho_{air}=1.225 kg/m^3

F_d=\frac{1}{2}\times 1.225\times 0.344\times 0.88(5)^2=4.635N

Power,P=(F_d+f)\times v'

340=(4.1+4.635) v'=8.735v'

v'=\frac{340}{8.735}=38.9m/s

v'=87.1 mph

1 m=0.00062137 miles

1 hour=3600 s

7 0
3 years ago
Elements that typically give up electrons
Naddika [18.5K]
Same answer as the first one above
8 0
2 years ago
Which of the following is the best example of a primary circular reaction?
olga55 [171]

Primary Circular Reactions (1-4 months): This substage involves coordinating sensation and new schemas. For example, a child may suck his or her thumb by accident and then later intentionally repeat the action. These actions are repeated because the infant finds them pleasurable.

4 0
2 years ago
What effect does time have on the speed of a moving object
sergejj [24]
Velocity is d/t distance over time. Increase velocity (speed) decrease. Increase d velocity increases.
6 0
2 years ago
If you're under 18 and you receive or more license points in 12
tensa zangetsu [6.8K]

Answer:

The best answer for Florida is probably going to be B. 6

Explanation:

5 0
2 years ago
Read 2 more answers
Other questions:
  • To achieve a speed of 2 m/s, the bottle must be dropped at m. To achieve a speed of 3 m/s, the bottle must be dropped at m. To a
    15·2 answers
  • How are land-use laws in the United States different from the land-use laws inherited from England?
    13·2 answers
  • When the time of day for a certain ship at sea is 12 noon, the time of day at the prime meridian (0 longitude0 is 5 pm. what is
    9·1 answer
  • The work brandon does in lifting a rock is calculated by multiplying the weight of the rock by the change in the of the rock.
    6·1 answer
  • What type of crime is committed when a hacker steals someones's bank accounts information
    8·2 answers
  • The planet whose distance from the sun equals 1 <br> a.u. is: venus earth mars jupiter
    7·2 answers
  • Can you help me please
    13·1 answer
  • A ball is thrown up into the air. Describe the work done on the ball and the energy transformations that take place
    6·1 answer
  • Trial.
    12·1 answer
  • Help!!!!!!!!!!!!!!!!!​
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!