You would want to increase the temperature.
Answer:
The answer is the mass of d
Answer:
Answer: <u>Height</u><u> </u><u>is</u><u> </u><u>0</u><u>.</u><u>2</u><u>0</u><u>4</u><u> </u><u>m</u>
Explanation:
At the highest point, it is called the maximum height.
• From third newton's equation of motion:

• At maximum height, v is zero
• u is initial speed
• g is -9.8 m/s²
• s is the height

Answer:
Kinetic energy, E = 133.38 Joules
Explanation:
It is given that,
Mass of the model airplane, m = 3 kg
Velocity component, v₁ = 5 m/s (due east)
Velocity component, v₂ = 8 m/s (due north)
Let v is the resultant of velocity. It is given by :


Let E is the kinetic energy of the plane. It is given by :


E = 133.38 Joules
So, the kinetic energy of the plane is 133.38 Joules. Hence, this is the required solution.
law of conservation of energy
aka the first law of thermodynamics