1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
amid [387]
3 years ago
10

A waterwheel is an example of: wave energy tidal energy wind energy hydro energy

Physics
2 answers:
Dominik [7]3 years ago
8 0

Answer: tidal energy

Explanation:

A water wheel is a machine used for converting the energy of flowing or falling water into useful form of energy .

Tidal Energy is also called as tidal power and is another form of hydro power that utilizes large amounts of energy stored in the tides to generate electricity. The water is used to drive the turbines and thus the electricity is being generated.

Nesterboy [21]3 years ago
6 0
A waterwheel is an example of Tidal energy
You might be interested in
Based on the information in the graph, which of the atoms listed below is the most stable?
elixir [45]
Based on the information in the graph, the atom which is listed below is the most stable would be A. Oxygen-16 (O-16).
8 0
4 years ago
Read 2 more answers
A torque of 36.5 N · m is applied to an initially motionless wheel which rotates around a fixed axis. This torque is the result
vivado [14]

Answer:

21.6\ \text{kg m}^2

3.672\ \text{Nm}

54.66\ \text{revolutions}

Explanation:

\tau = Torque = 36.5 Nm

\omega_i = Initial angular velocity = 0

\omega_f = Final angular velocity = 10.3 rad/s

t = Time = 6.1 s

I = Moment of inertia

From the kinematic equations of linear motion we have

\omega_f=\omega_i+\alpha_1 t\\\Rightarrow \alpha_1=\dfrac{\omega_f-\omega_i}{t}\\\Rightarrow \alpha_1=\dfrac{10.3-0}{6.1}\\\Rightarrow \alpha_1=1.69\ \text{rad/s}^2

Torque is given by

\tau=I\alpha_1\\\Rightarrow I=\dfrac{\tau}{\alpha_1}\\\Rightarrow I=\dfrac{36.5}{1.69}\\\Rightarrow I=21.6\ \text{kg m}^2

The wheel's moment of inertia is 21.6\ \text{kg m}^2

t = 60.6 s

\omega_i = 10.3 rad/s

\omega_f = 0

\alpha_2=\dfrac{0-10.3}{60.6}\\\Rightarrow \alpha_1=-0.17\ \text{rad/s}^2

Frictional torque is given by

\tau_f=I\alpha_2\\\Rightarrow \tau_f=21.6\times -0.17\\\Rightarrow \tau=-3.672\ \text{Nm}

The magnitude of the torque caused by friction is 3.672\ \text{Nm}

Speeding up

\theta_1=0\times t+\dfrac{1}{2}\times 1.69\times 6.1^2\\\Rightarrow \theta_1=31.44\ \text{rad}

Slowing down

\theta_2=10.3\times 60.6+\dfrac{1}{2}\times (-0.17)\times 60.6^2\\\Rightarrow \theta_2=312.03\ \text{rad}

Total number of revolutions

\theta=\theta_1+\theta_2\\\Rightarrow \theta=31.44+312.03=343.47\ \text{rad}

\dfrac{343.47}{2\pi}=54.66\ \text{revolutions}

The total number of revolutions the wheel goes through is 54.66\ \text{revolutions}.

3 0
3 years ago
A 2.5 kg block is launched along the ground by a spring with a spring constant of 56 N/m. The spring is initially compressed 0.7
Norma-Jean [14]

vf ^2 = kx^2/m = 56(0.75)^2 / 2.5 = 12.6


Therefore, v= 3.5 m/s.

7 0
3 years ago
Read 2 more answers
How do your results from ray tracing compare to your results from using the thin-lens equation?
EastWind [94]

Answer:

20cm

Explanation:

A convex lens has a positive focal length and the object placed in front of it produce both virtual and real image <em>(image distance can be negative or positive depending on the nature of the image</em>).

According to the lens equation

\frac{1}{f} = \frac{1}{u} + \frac{1}{v} where;

f is the focal length  of the lens

u is the object distance

v is the image distance

If the magnification is - 0.6

mag = v/u = -0.5

v = -0.5u

since v = 10cm

10 = -0.5u

u = -10/0.5

u =-20 cm

Substitute u = -20cm ( due to negative magnification)and v = 10cm into the lens formula to get the focal length f

\frac{1}{f} = \frac{1}{u} + \frac{1}{v}\\\frac{1}{f} = \frac{1}{-20} + \frac{1}{10}\\\frac{1}{f} = \frac{1}{-20} + \frac{1}{10}\\\frac{1}{f} = \frac{-1+2}{20} \\\frac{1}{f} = \frac{1}{20} \\cross \ multiply\\f = 20\\f = 20 cm

Hence the focal length of the convex lens is 20cm

7 0
3 years ago
As shown in the figure below, Justin walks from the house to his truck on a windy day. He walks 20 m toward
juin [17]

Complete Question

The complete question is shown on the first uploaded image

Answer:

The velocity is   v =0.333 \  m/s in positive x -direction

The speed is s = 0.733 \ m/s

Explanation:

From the question we are told that

The distance from the house to truck is  D =  20 m

  The distance traveled back to retrieve  wind-blown hat is  d =  15

  The distance from the wind-blown hat position too the truck is  k =  20  m

  The total time taken is  t  =  75 s

Generally when calculating the displacement the Justin's backward movement to collect his wind - blown hat is taken as negative

Generally Justin's displacement is mathematically represented as

      L  =  20 - 15 + 20

=>    L  =  25 \ m

Generally the average velocity is mathematically represented as

          v  =  \frac{L}{t}

=>      v = \frac{25}{75}

=>      v =0.333 \  m/s

Generally the distance covered by Justin is mathematically represented as  

         R =  D+ d + k

=>      R =  20 + 15 +20

=>     R =  55 \  m

Generally Justin's average speed over a 75 s period is mathematically represented as

            s = \frac{R}{ t}

=>         s = \frac{55}{ 75}

=>        s = 0.733 \ m/s

8 0
4 years ago
Other questions:
  • A Ferris wheel is a vertical, circular amusement ride with radius 6.0 m. Riders sit on seats that swivel to remain horizontal. T
    15·1 answer
  • An electron is accelerated through a potential difference of 0.20 v. How much greater would its final speed be if it is accelera
    9·1 answer
  • Discuss how a battery works
    7·1 answer
  • During a camping trip, Sierra collected dry branches and broke them into smaller pieces. She then placed the sticks in a fire pi
    9·1 answer
  • A football is kicked into the air with a horizontal velocity of 20 m/s and a vertical velocity of 30 m/s what is the resultant v
    9·1 answer
  • Carbon-14 is the typical radioisotope used to date materials; however, it has a limitation to 40,000 years. A scientist who want
    6·2 answers
  • Which of the following is the primary function of groundwater?
    9·2 answers
  • A 1.3 kgkg block slides along a frictionless surface at 1.3 m/sm/s . A second block, sliding at a faster 5.0 m/sm/s , collides w
    9·2 answers
  • An 6 kg object accelerating from 17 m/s to 10 m/s. What is the change in momentum of the object?
    13·1 answer
  • A 0.137 kg mass on a string
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!