By tightening a string you are actually putting more stress on the string you are giving it a new frequency that isn't natural.
Hope this helps
<span />
Answer:
Explanation:
<u>1. Name of the variables:</u>

<u>2. Formulae:</u>




<u>3. Solution (calculations)</u>




Answer:
a

b

Explanation:
From the question we are told that
The speed of the spaceship is 
Here c is the speed of light with value 
The length is 
The distance of the star for earth is 
The speed is 
Generally the from the length contraction equation we have that
![l = l_o \sqrt{1 -[\frac{v}{c } ]}](https://tex.z-dn.net/?f=l%20%20%3D%20%20l_o%20%20%5Csqrt%7B1%20-%5B%5Cfrac%7Bv%7D%7Bc%20%7D%20%5D%7D)
Now the when at rest the length is 
So



Considering b
Applying above equation
![l =l_o \sqrt{1 - [\frac{v}{c } ]}](https://tex.z-dn.net/?f=l%20%20%3Dl_o%20%5Csqrt%7B1%20-%20%20%5B%5Cfrac%7Bv%7D%7Bc%20%7D%20%5D%7D)
Here 
So



In series circuit, Req = R₁ + R₂ + R₃ + ···
In parallel circuit, 
<h3>Q7.</h3>
total resistance in the upper branch = R₂ + R₃ = R₂ + 2


R₂ + 2 = 12
R₂ = 10Ω
<h3>Q8.</h3>


Req = 1.7Ω
Complete Question
A thin, horizontal, 12-cm-diameter copper plate is charged to 4.4 nC . Assume that the electrons are uniformly distributed on the surface. What is the strength of the electric field 0.1 mm above the center of the top surface of the plate?
Answer:
The values is 
Explanation:
From the question we are told that
The diameter is 
The charge is 
The distance from the center is 
Generally the radius is mathematically represented as

=> 
=> 
Generally electric field is mathematically represented as
![E = \frac{Q}{ 2\epsilon_o } [1 - \frac{k}{\sqrt{r^2 + k^2 } } ]](https://tex.z-dn.net/?f=E%20%3D%20%20%5Cfrac%7BQ%7D%7B%202%5Cepsilon_o%20%7D%20%5B1%20-%20%5Cfrac%7Bk%7D%7B%5Csqrt%7Br%5E2%20%2B%20%20k%5E2%20%7D%20%7D%20%5D)
substituting values
![E = \frac{4.4 *10^{-9}}{ 2* (8.85*10^{-12}) } [1 - \frac{(1.00 *10^{-4})}{\sqrt{(0.06)^2 + (1.0*10^{-4})^2 } } ]](https://tex.z-dn.net/?f=E%20%3D%20%20%5Cfrac%7B4.4%20%2A10%5E%7B-9%7D%7D%7B%202%2A%20%288.85%2A10%5E%7B-12%7D%29%20%7D%20%5B1%20-%20%5Cfrac%7B%281.00%20%2A10%5E%7B-4%7D%29%7D%7B%5Csqrt%7B%280.06%29%5E2%20%2B%20%20%281.0%2A10%5E%7B-4%7D%29%5E2%20%7D%20%7D%20%5D)
