Answer:
The change in volume is 
Solution:
As per the question:
Coefficient of linear expansion of Copper, 
Initial Temperature, T =
= 273 K
Final Temperature, T' =
= 273 + 100 = 373 K
Now,
Initial Volume of the block, V = 



where
V' = Final volume


Although many characteristics are common<span> throughout the </span>group<span>, the heavier metals such as Ca, Sr, Ba, and Ra are almost as reactive as the </span>Group<span> 1 Alkali Metals. All the </span>elements<span> in </span>Group 2 have two<span> electrons in their valence shells, giving them an oxidation state of +</span><span>2.</span>
<u>Given </u><u>:</u><u>-</u>
- An elevator is moving vertically up with an acceleration a.
<u>To </u><u>Find</u><u> </u><u>:</u><u>-</u>
- The force exerted on the floor by a passenger of mass m .
<u>Solution</u><u> </u><u>:</u><u>-</u>
As the man is in a accelerated frame that is <u>non </u><u>inertial</u><u> frame</u><u> </u>, we would have to think of a pseudo force .
- The direction of this force is opposite to the direction of acceleration the frame and its magnitude is equal to the product of mass of the concerned body with the acceleration of the frame .
For the FBD refer to the attachment . From that ,
<u>Hence</u><u> </u><u>option</u><u> </u><u>d </u><u>is </u><u>correct</u><u> </u><u>choice </u><u>.</u>
<em>I </em><em>hope</em><em> this</em><em> helps</em><em> </em><em>.</em>
They have the same velocity because their displacements (shortest line from point A to point B, which is a straight line) are the same and they meet at the same time.
When is at the end of the runway the velocity of the plane is given by the equation

where s=1800 m is the runway length. Thus
At half runway the velocity of the plane is

Therefore at midpoint of runway the percentage of takeoff velocity is
‰