1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Drupady [299]
3 years ago
5

An attacker at the base of a castle wall 3.60 m high throws a rock straight up with speed 8.00 m/s from a height of 1.70 m above

the ground. Does the change in speed of the downward-moving rock agree with the magnitude of the speed change of the rock moving upward between the same elevations?
Physics
1 answer:
ryzh [129]3 years ago
6 0

Answer:

we can say here that | v² - u² | is the same for upward as for downward and change in the speed is different here so | v - u | same whenever rock travel up, down for same time and not same distances

Explanation:

given data

base = 3.60 m

speed u = 8 m/s

height = 1.70 m

to find out

check change in speed

solution

we know here formula for v  that is

v² = u² - 2gh      ............1        for upward speed

v² = u² + 2gh     ............2        for projected speed

so here put all value and find v with h = 3.60 - 1.70 = 1.9 m

v² = 8² - 2(9.8) 1.9  = 26.76

v² = 8² + 2(9.8) 1.9   = 101.24

v = 5.173  m/s    ..............3

v = 10.061 m/s   ...................4

so change in speed form 3 and 4 equation

change in speed = v - u = 8 - 5.173  = 2.827 m/s     .................5

change in speed = v - u = 10.061 - 8 = 2.061 m/s     ..................6

so now we can say here that | v² - u² | is the same for upward as for downward and change in the speed is different here so | v - u | same whenever rock travel up, down for same time and not same distances

You might be interested in
An object is said to move from a position of 10m East to a position of 5m west. Determine the object's distance travelled.
motikmotik

Answer:

5 i think

Explanation:

4 0
3 years ago
If a point has 40 J of energy and the electric potential is 8 V, what must be the charge?
Alekssandra [29.7K]

If a point has 40 J of energy and the electric potential is 8 V, the charge must be: A. 5 C

<u>Given the following the details;</u>

  • Energy = 40 Joules
  • Electric potential = 8 Volts

To find the quantity of charge;

Mathematically, the quantity of charge with respect to electric potential is given by the formula;

Quantity \; of \; charge = \frac{Energy}{Electric \; potential}

Substituting the values into the formula, we have;

Quantity \; of \; charge = \frac{40}{8}

<em>Quantity of charge = 5 Coulombs</em>

Therefore, the quantity of charge must be <em>5 Coulombs.</em>

Find more information: brainly.com/question/21808222

8 0
3 years ago
Read 2 more answers
Determine whether or not each of the following statement is true. If a statement is true, prove it. If the statement is false, p
Studentka2010 [4]

Answer:

True

Explanation:

This is a representation of Gauss law.

Gauss’s law does hold for moving charges, and in this respect Gauss’s law is more general than Coulomb’s law. In words, Gauss’s law states that: The net outward normal electric flux through any closed surface is proportional to the total electric charge enclosed within that closed surface. The law can be expressed mathematically using vector calculus in integral form and differential form, both are equivalent since they are related by the divergence theorem, also called Gauss’s theorem.

8 0
3 years ago
A thin taut string is fixed at both ends and stretched along the horizontal x-axis with its left end at x = 0. It is vibrating i
Fofino [41]

Answer:

(a) Wavelength is 0.436 m

(b) Length is 0.872 m

(c) 11.518 m/s

Solution:

As per the question:

The eqn of the displacement is given by:

y(x, t) = (1.22 cm)sin[14.4 m^{- 1}x]cos[(166\ rad/s)t]          (1)

n = 4

Now,

We know the standard eqn is given by:

y = AsinKxcos\omega t           (2)

Now, on comparing eqn (1) and (2):

A = 1.22 cm

K = 14.4 m^{- 1}

\omega = 166\ rad/s

where

A = Amplitude

K = Propagation constant

\omega = angular velocity

Now, to calculate the string's wavelength,

(a) K = \frac{2\pi}{\lambda}

where

K = propagation vector

\lambda = \frac{2\pi}{K}

\lambda = \frac{2\pi}{14.4} = 0.436\ m

(b) The length of the string is given by:

l = \frac{n\lambda}{2}

l = \frac{4\times 0.436}{2} = 0.872\ m

(c)  Now, we first find the frequency of the wave:

\omega = 2\pi f

f = \frac{\omega}{2\pi}

f = \frac{2\pi}{166} = 26.42\ Hz

Now,

Speed of the wave is given by:

v = f\lambda

v = 26.419\times 0.436 = 11.518\ m/s

4 0
3 years ago
Helppppppppppppppppp​
svlad2 [7]
Burning of paper is the answer
6 0
3 years ago
Read 2 more answers
Other questions:
  • 0.2000 kg of water at 20.00°C is contained in a 0.1000-kg copper container. The container is shaken vigorously for 10.00 minutes
    5·1 answer
  • Electrons are accelerated through a voltage difference of 230 kV inside a high voltage accelerator tube. What is the final kinet
    9·1 answer
  • Which statement best explains that sound waves are pressure waves?
    6·2 answers
  • What is the mechanical advantage of a single pulley
    5·2 answers
  • Does the asteroid belt revolve around the sun?
    14·1 answer
  • Based on the bond energies given for each of the following which is the most stable? O=O 498 kJ/mol N≡N 946 kJ/mol C=C 614 kJ/mo
    10·1 answer
  • A sound wave has a speed of
    6·1 answer
  • 5. Which of the following is NOT a course goal?
    12·1 answer
  • I need help on this question!! Please answer asap!
    5·1 answer
  • Find the reaction supports at Ta and TB as shown in the loaded beam.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!