Answer:11.2
Step-by-step explanation:cant round it
Answer:
Isosceles
Step-by-step explanation:
Hope this helps you
Answer:
DONT OPEN THE OTHER GUYS ANSWER
Step-by-step explanation:
<span>(X^2+6)(4x-3)
</span><span>=<span><span>(<span><span>x2</span>+6</span>)</span><span>(<span><span>4x</span>+<span>−3</span></span>)</span></span></span><span>=<span><span><span><span><span>(<span>x2</span>)</span><span>(<span>4x</span>)</span></span>+<span><span>(<span>x2</span>)</span><span>(<span>−3</span>)</span></span></span>+<span><span>(6)</span><span>(<span>4x</span>)</span></span></span>+<span><span>(6)</span><span>(<span>−3</span><span>)
</span></span></span></span></span>4x3−3x2+24x−18 is the answer
Answer:
3
Step-by-step explanation:
lim(t→∞) [t ln(1 + 3/t) ]
If we evaluate the limit, we get:
∞ ln(1 + 3/∞)
∞ ln(1 + 0)
∞ 0
This is undetermined. To apply L'Hopital's rule, we need to rewrite this so the limit evaluates to ∞/∞ or 0/0.
lim(t→∞) [t ln(1 + 3/t) ]
lim(t→∞) [ln(1 + 3/t) / (1/t)]
This evaluates to 0/0. We can simplify a little with u substitution:
lim(u→0) [ln(1 + 3u) / u]
Applying L'Hopital's rule:
lim(u→0) [1/(1 + 3u) × 3 / 1]
lim(u→0) [3 / (1 + 3u)]
3 / (1 + 0)
3