Answer:
22.77 g.
he limiting reactant is O₂, and the excess reactant is Mg.
Explanation:
- From the balanced reaction:
<em>Mg + 1/2O₂ → MgO,</em>
1.0 mole of Mg reacts with 0.5 mole of oxygen to produce 1.0 mole of MgO.
- We need to calculate the no. of moles of (16.3 g) of Mg and (4.52 g) of oxygen:
no. of moles of Mg = mass/molar mass = (16.3 g)/(24.3 g/mol) = 0.6708 mol.
no. of moles of O₂ = mass/molar mass = (4.52 g)/(16.0 g/mol) = 0.2825 mol.
So. 0.565 mol of Mg reacts completely with (0.2825 mol) of O₂.
<em>∴ The limiting reactant is O₂, and the excess reactant is Mg (0.6708 - 0.565 = 0.1058 mol).</em>
<u><em>Using cross multiplication:</em></u>
1.0 mole of Mg produce → 1.0 mol of MgO.
∴ 0.565 mol of Mg produce → <em>0.565 mol of MgO.</em>
<em>∴ The amount of MgO produced = no. of moles x molar mass </em>= (0.565 mol)(40.3 g/mol) = <em>22.77 g.</em>
This set up of a conversion table should show you that if you multiply
the grams of BeI2 times .02 moles, it equals <span>5.256 g (your answer) </span>
The property of liquid oxygen that makes it especially difficult and potentially harmful to work with at home would be its cryogenic temperature. Liquid oxygen is being produced from the compression of oxygen gas to -196 degrees Celsius. As you can see, it has a very cold temperature that is why it used in cryogenics. Although liquid oxygen is non-toxic to humans, it would cause burns that are severe when being touched. Also, it would make certain materials brittle and unstable. Another property that makes it dangerous for use at home would be that it is very flammable. Proper handling is a must for this substance.
Answer:
Al(OH)- 4,
Explanation:
NaOH added to 0.010 M Al3+
The predominant species at equilibrium will be = Al(OH)- 4, and this because sodium hydroxide ( NaOH ) is a base will readily form a stable complex ion with aluminum ion like ( Al( OH ) - 4 . also the higher the Kf value the more stable the complex ion becomes and the more soluble Al(OH)3 becomes
hence the predominant species at equilibrium is : Al(OH)- 4,