We know that the perimeter of a rectangle is twice the length, plus twice the width.
P = 2L + 2W
We also know that the perimeter is 156.
P = 156
Finally, we know that the width is 12 less than the length.
W = L - 12.
The next thing that we do is substitute the information that we have into the original equation:
P = 2L + 2W
156 = 2L + 2(L - 12)
From this point we start to solve
156 = 2L + 2L - 24 <---we multiplied the '2' through the parenthesis
156 + 24 = 2L + 2L - 24 + 24
180 = 2L + 2L <--- getting like terms on same sides
180 = 4L <---combining like terms
180/4 = 4L/4 <--- getting like terms on same sides
45 = L <---now we have a value for L
Now we take the known value for L and substitute it in to our equation for W
W = L - 12
W = 45 - 12
W = 33
So now we have Length = 45 and Width = 33.
Given:
Triangle
height 14 inches
area 245 inches square
Formula in finding the area of a triangle is:
Area = (height * base) / 2
The base is missing, so we need to compute its value using the given figures.
245 = (14 * b) / 2
245 * 2 = 14b
490 = 14b
490/14 = b
35 = b
The base is 35 inches.
Answer:
1.7*10^3 greater
Step-by-step explanation:
So just divide the two numbers
3.4 * 10^5/ 2 * 10^3
Answer:
A:-18
Step-by-step explanation:
Hopefully this helps!
There are 9 marbles in the bag. We pick 2 without replacement and get a probability of 1/6.
Each draw of a marble has a probability associated with it. Multiplying these gives 1/6 so let us assume the probabilities are (1/3) and (1/2).
In order for the first draw to have a probability of 1/3 we need to draw a color that has (1/3)(9)=3 marbles. So let's say there are 3 red marbles. The P(a red marble is drawn) = 1/3.
Now that a marble has been drawn there are 8 marbles left. In order for the second draw to have a probability of 1/2 we must draw a color that has (1/2)(8) = 4 marbles. So let's say there are 4 blue marbles out of the 8.
Since there are 9 marbles to start and we have 3 red marbles and 4 blue marbles, the remaining 2 marbles must be a different color. Let us say they are green.
The problem is: There are 3 red marbles, 4 blue marbles and 2 green marbles in a jar. A marble is picked at random, it's color is noted and the marble is not replaced. A second marble is drawn at random and its color noted. What is the probability that the first marble is red and the second blue?