Answer:
Since strong nuclear forces involve only nuclear particles (not electrons, bonds, etc) items 3 and 4 are eliminated.
Again item 2 refers to bonds between atoms and is eliminated.
This leaves only item 1.
Nuclear forces are very short range forces between components of the nucleus.
Weak nuclear forces are trillions of times smaller than strong forces.
Gravitational forces are much much smaller than the weak nuclear force.
Answer:
20 ms¯¹
Explanation:
3. Determination of the final velocity
From the question given above, the following data were obtained:
Time (t) = 4 s
Acceleration (a) = 5 ms¯²
Initial velocity (u) = 0 ms¯¹
Final velocity (v) =?
Acceleration is simply defined as the change in velocity per unit time.
Mathematically, it can be expressed as:
Acceleration (a) = final velocity – Initial velocity / time
a = v – u / t
With the above formula, we can obtain the final velocity of the car as follow:
Time (t) = 4 s
Acceleration (a) = 5 ms¯²
Initial velocity (u) = 0 ms¯¹
Final velocity (v) =?
a = v – u / t
5 = v – 0 / 4
5 = v / 4
Cross multiply
v = 5 × 4
v = 20 ms¯¹
Thus, the final velocity of the car is 20 ms¯¹
Answer:
17.71N/m
Explanation:
The period of the spring is expressed according to the expression;

m is the mass of the object
k is the force constant
Given
m = 5.50kg
T = 3.50s
Substitute into the formula;

Hence the force constant of the spring is 17.71N/m
Answer:
Pressure, 
Explanation:
It is given that,
Combined mass of the man and the chair, m = 95 kg
Radius of the leg of chair, r = 0.5 cm = 0.005 m
A large man sits on a four-legged chair with his feet off the floor. The force acting per unit area is called the pressure exerted.


Area of 4 legs, A = 4 A



So, the pressure each leg exert on the floor is
. Hence, this is the required solution.