Answer:
<em>A.The rabbits in the new habitat will have lower genetic variation than the rabbits in the original habitat. </em>
<em></em>
Explanation:
If two animals of opposite sex are isolated from a larger group of animal, and made to reproduce. They will produce offspring with similar genetic makeup. If this offspring still remain isolated, and continue to interbreed within themselves for a number of consecutive generations, their offspring will all be very closely related genetically. Situations like this just as with the two rabbits in the question leads to a lower genetic variation within the offspring of the two animals.
Animals need to reproduce within a larger group in order to increase genetic variation. Increasing genetic variation reduces the risk of been sucked into a gene pool. A lower genetic variation reduces the fitness of the animals involved. It is only an advantage in cases in which the the original pair are resistant to a deadly disease. In this case all the offspring also develop this immunity. Mostly the effects of a lower genetic variation leaves negative impacts, and animals try to avoid this by preferring to interbreed with unrelated partner
The answer is A
Explanation: the conservation of matter means that the mass stays the same
Answer:
unbalanced force
Explanation:
this is a guess so just look it up
Answer:
14.49 g/cm²
Explanation:
I = Io e^-(ux)
Where:
I = 573
Io = 1045
x = 0.3 inches and
rho = 11.4g/cm^3
Using the conversion constant
1 inch = 2.54 cm;
0.3 inches = 0.3 * 2.54 cm
0.3 inches = 0.762 cm
I/Io = e^-(ux), or say
Io/I = e^(ux), taking the In of both sides
ln(Io/I) = ux, making u subject of formula
u = 1/x * ln(Io/I)
u = 1/0.762 * ln(1045/573)
u = 1.312 * 0.6
u = 0.787
Next, we say that
u/rho = 0.7872/11.4 = 0.069
And finally, we make
1/(u/rho) to be our final answer
Inverse of the answer is = 14.49 g/cm²
Therefore, the um^-1 in g/cm^2? is 14.49