Answer:
There's a video called Drawing Position vs Time Graphs made by MrDGenova that may help you, it's only three minutes long.
Explanation:
Hope that helps, if not, you could tell me what you don't understand and I could try explaining it in further detail.
The weight of an object is the force of gravity between Earth's
mass and the object's mass.
The forces of gravity always come in equal, opposite pairs.
The Earth's weight on the object is the same as the object's
weight on the Earth, and when the object falls to Earth, Earth
falls to the object.
The maximum height reached by the ball is 99.2 m
Explanation:
When the ball is thrown straight up, it follows a free fall motion, which is a uniformly accelerated motion with constant acceleration (
towards the ground). Therefore, we can use the following suvat equation:

where
v is the final velocity
u is the initial velocity
a is the acceleration
s is the displacement
In this problem, we have:
u = 44.1 m/s is the initial vertical velocity of the ball
v = 0 is the final velocity when the ball reaches the maximum height
s is the maximum height
is the acceleration of gravity (downward, so negative)
Solving for s, we find the maximum height reached by the ball:

Learn more about free fall:
brainly.com/question/1748290
brainly.com/question/11042118
brainly.com/question/2455974
brainly.com/question/2607086
#LearnwithBrainly
Ans: Time <span>taken by a pulse to travel from one support to the other
= 0.348s</span>
Explanation:First you need to find out the speed of the wave.
Since
Speed = v =

Where
T = Tension in the cord = 150N
μ = Mass per unit length = mass/Length = 0.65/28 = 0.0232 kg/m
So
v =

= 80.41 m/s
Now the time-taken by the wave = t = Length/speed = 28/80.41=
0.348s