1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gre4nikov [31]
3 years ago
10

Fixed expenses are expenses that do not change from month to month, and variable expenses are expenses that can fluctuate from m

onth to month
Mathematics
2 answers:
notsponge [240]3 years ago
7 0

Answer:

yes

Step-by-step explanation:

kompoz [17]3 years ago
7 0

Answer:

Yes these statements are correct.

Step-by-step explanation:

Fixed expenses are expenses that do not change from month to month. Yes these expenses are like monthly rent or EMI's, or monthly fee for your children etc.

Variable expenses are expenses that can fluctuate from month to month. Like sudden plan of parties or weddings, sudden illness of someone etc.

You might be interested in
Pweaseee help!!!!!!!!!!!!!!!​
liraira [26]
To simplify this expression would be 4x-3
8 0
3 years ago
Zina goes shopping. She buys in the same store two scarves and three T-shirts for
Umnica [9.8K]

Answer:

The price of T-shirts before the sale = 42 euros

The price of scarves before the sale = -77/2 euros

Step-by-step explanation:

The cost of the items Zina buys from the store initially are;

Two scarves and three T-shirts for 49 euros

The reduction in the price of scarves a week later during sales = 1.5 euros

The reduction in the price of T-shirts a week later during sales = 2 euros

The items Zina bought for 40 euros at the reduced price of the sales opportunity are;

Four scarves and five T-shirts for 40 euros

Let 'x' represent the initial price of a scarf and let 'y' represent the initial price of a T-shirt, we  have;

2·x + 3·y = 49...(1)

4·(x - 1.5) + 5·(y - 2) = 40...(2)

Expanding equation (2) gives;

4·x - 6 + 5·y - 10 = 40

4·x + 5·y = 40 + 6 + 10 = 56

∴ 4·x + 5·y = 56...(3)

By multiplying equation (1) by 2 and subtracting the result from equation (3), we get;

4·x + 5·y - 2 × (2·x + 3·y) = 56 - 2 × 49 = -63

-y = -42

y = 42

The price of T-shirts before the sale = 42 euros

x = (49 - 3 × 42)/2 = -77/2

x = -77/2

The price of scarves before the sale = -77/2 euros

(However, if the had bought the 4 scarves and 5 T-shirts during sales at 70 euros, we get;

The price of T-shirts before the sale = 12 euros

The price of scarves before the sale = 6.5 euros.

The allowable total price for the reduced 4 scarves and 5 T-shirts is between 66 and about 82 for both initial prices to be +ve)

6 0
3 years ago
A+b=180<br> A=-2x+115<br> B=-6x+169<br> What is the value of B?
natulia [17]
The answer is:  " 91 " .   
___________________________________________________
                    →    " B = 91 " .
__________________________________________________ 

Explanation:
__________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  
_____________________________________________________
METHOD 1)
_____________________________________________________
Solve for "x" ; and then plug the solved value for "x" into the expression given for "B" ; to  solve for "B"
_____________________________________________________

(115 − 2x) + (169 − 6x) = 

  115 − 2x + 169 − 6x = ?

→ Combine the "like terms" ;  as follows:

      + 115 + 169 = + 284 ; 

 − 2x − 6x = − 8x ; 
_________________________________________________________
And rewrite as:

 " − 8x + 284 " ; 
_________________________________________________________
   →  " - 8x + 284 = 180 " ; 

Subtract:  "284" from each side of the equation:

  →  "  - 8x + 284 − 284 = 180 − 284 " ; 

to get:

 →  " -8x = -104 ; 

Divide EACH SIDE of the equation by "-8 " ; 
    to isolate "x" on one side of the equation; & to solve for "x" ; 

→ -8x / -8 = -104/-8 ; 

→  x = 13
__________________________________________________________
Now, to find the value of "B" :
__________________________________________________________
  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  

↔  B = 169 − 6x ;  

         = 169 − 6(13) ;   ===========> Plug in our "solved value, "13",  for "x" ;

         = 169 − (78) ; 

         = 91 ;

   B   = " 91 " .
__________________________________________________
The answer is:  " 91 " . 
____________________________________________________
     →     " B = 91 " . 
____________________________________________________
Now;  let us check our answer:
____________________________________________________
               →   A + B = 180 ;  
____________________________________________________
Plug in our "solved answer" ; which is "91", for "B" ;  as follows:
________________________________________________________

→  A + 91 = ? 180? ;  

↔  A = ? 180 − 91 ? ; 

→  A = ?  -89 ?  Yes!
________________________________________________________
→  " A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

Plug in our solved value for "x"; which is: "13" ; 

" A = 115 − 2x " ; 

→  A = ? 115 − 2(13) ? ;

→  A = ? 115 − (26) ? ; 

→  A = ? 29 ? Yes!
_________________________________________________ 
METHOD 2)
_________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→  Solve for the value of "B" :
_______________________________________________________
 A + B = 180 ;  

→ B = 180 − A ; 

→ B = 180 − (115 − 2x) ; 

→ B = 180 − 1(115 − 2x) ;  ==========> {Note the "implied value of "1" } ; 
__________________________________________________________
Note the "distributive property" of multiplication:__________________________________________________  a(b + c)  = ab +  ac ;  <u><em>AND</em></u>:
  a(b − c)  = ab − ac .________________________________________________________
Let us examine the following part of the problem:
________________________________________________________
              →      " − 1(115 − 2x)  " ; 
________________________________________________________

→  "  − 1(115 − 2x) " = (-1 * 115) − (-1 * 2x) ;

                                =  -115 − (-2x) ;
                         
                                =  -115  +  2x ;        
________________________________________________________
So we can bring down the:  " {"B = 180 " ...}"  portion ; 

→and rewrite:
_____________________________________________________

→  B = 180 − 115 + 2x ; 

→  B = 65 + 2x ; 
_____________________________________________________
Now;  given:   "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→ " B =  169 − 6x  =  65 + 2x " ; 
______________________________________________________
→  " 169 − 6x  =  65 + 2x "

Subtract "65" from each side of the equation;  & Subtract "2x" from each side of the equation:

→  169 − 6x − 65 − 2x  =  65 + 2x − 65 − 2x ; 

to get:

→   " - 8x + 104 = 0 " ;
 
Subtract "104" from each side of the equation:

→   " - 8x + 104 − 104 = 0 − 104 " ;

to get: 

→   " - 8x = - 104 ;

Divide each side of the equation by "-8" ; 
   to isolate "x" on one side of the equation; & to solve for "x" ; 

→  -8x / -8  = -104 / -8 ; 

to get:

→  x =  13 ; 
______________________________________________________

Now, let us solve for:  " B " ;  → {for which this very question/problem asks!} ; 

→  B = 65 + 2x ;  

Plug in our solved value, " 13 ",  for "x" ; 

→ B = 65 + 2(13) ; 

        = 65 + (26) ;  

→ B =  " 91 " .
_______________________________________________________
Also, check our answer:
_______________________________________________________
Given:  "B = - 6x + 169 " ;   ↔  B = 169 − 6x = 91 ; 

When "x  = 13 " ; does: " B = 91 " ? 

→ Plug in our "solved value" of " 13 " for "x" ;

      → to see if:  "B = 91" ; (when "x = 13") ;

→  B = 169 − 6x ; 

         = 169 − 6(13) ; 

         = 169 − (78)______________________________________________________
→ B = " 91 " . 
______________________________________________________
6 0
2 years ago
How to find the inverse of g(x) = -3 +(3/5)x​
nasty-shy [4]

Answer:

g^-1(x)=5x/3 +5

3 0
2 years ago
Which is the directrix of a parabola with equation x2 = 8y?
olga_2 [115]

Answer:

Y=-2

Step-by-step explanation:

You would use the vertex form to find the directrix

4 0
2 years ago
Other questions:
  • 97 points
    7·2 answers
  • Prove this identity sin(2A)=2sinAcosA.
    12·1 answer
  • Answer the question below in the image
    7·1 answer
  • Find the measure of the indicated angle.
    7·1 answer
  • Right answer gets brainlist
    11·1 answer
  • Help me plzzzzzzzzzzzzzzzzzz
    7·1 answer
  • You borrow money for 4 years. The total amount you repay is $7,840, which includes $840 in simple interest. How much was the pri
    12·2 answers
  • VJKL has vertices J (6,2), K (1,3), and
    9·1 answer
  • On March 4, Micro Sales makes $13,500 in sales on bank credit cards which charge a 3% service charge and deposits the funds into
    15·1 answer
  • Richard wants to weed 33% of his garden today. The total garden is 144 square yards. How many square yards should Richard weed t
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!