Answer:
D. All of the Above
Explanation:
i just took the test on edgenuity
There are a couple of ways todetermine if a reaction is exothermic or endothermic. Endothermic meaning that heat is added to the reaction to make the reactants interact and exothermic meaning heat is released during the reaction between the two reactants.
In endothermic reactions you can find a triangle above the arrow.
Greatest is at W because kendrick is still and it’s at the highest point.. x has greatest gravitational because it’s closest to the ground.. potential energy is at Z because it’s going straight so it’s stil moving
Answer : The equilibrium concentration of
at
is,
.
Solution : Given,
Equilibrium constant, 
Initial concentration of
= 0.260 m
Let, the 'x' mol/L of
are formed and at same time 'x' mol/L of
are also formed.
The equilibrium reaction is,

Initially 0.260 m 0 0
At equilibrium (0.260 - x) x x
The expression for equilibrium constant for a given reaction is,
![K_c=\frac{[H_3O^+][C_2H_3O_2^-]}{[HC_2H_3O_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BH_3O%5E%2B%5D%5BC_2H_3O_2%5E-%5D%7D%7B%5BHC_2H_3O_2%5D%7D)
Now put all the given values in this expression, we get

By rearranging the terms, we get the value of 'x'.

Therefore, the equilibrium concentration of
at
is,
.
Density is proportional to molar mass, assuming pressure and
temperature remain constant. Therefore, since CO has a molar mass of 28
and CO2 has a molar mass of 44:
The relative density of CO vs air is 28/29 = 0.9655.
The relative density of CO2 vs air is 44/29 = 1.517.