The reaction for magnesium iodide when put into water is as below
MgI2(s) → Mg^2+(aq) + 2I^-(aq)
when magnesium iodide but into water it dissociate/ ionize completely into Mg^2+ and 2l^- ions. Magnesium iodide dissociate/ionize completely because magnesium iodide is a strong electrolyte which dissociate/ ionize completely into their ions when it is put into water .
Galactic recycling is a natural phenomenon in which the stars expel some gas into the space so that it would mix with the interstellar medium. As a result, this would produce new younger stars. So, basically, the concept done here is the mass and energy conservation. In order to create new species, the energy must come from another source.
Boiling point elevation is given as:
ΔTb=iKbm
Where,
ΔTb=elevation in the boiling point
that is given by expression:
ΔTb=Tb (solution) - Tb (pure solvent)
Here Tb (pure solvent)=118.1 °C
i for CaCO3= 2
Kb=2.93 °C/m
m=Molality of CaCO₃:
Molality of CaCO₃=Number of moles of CaCO₃/ Mass of solvent (Kg)
=(Given Mass of CaCO3/Molar mass of CaCO₃)/ Mass of solvent (Kg)
=(100.0÷100 g/mol)/0.4
= 2.5 m
So now putting value of m, i and Kb in the boiling point elevation equation we get:
ΔTb=iKbm
=2×2.93×2.5
=14.65 °C
boiling point of a solution can be calculated:
ΔTb=Tb (solution) - Tb (pure solvent)
14.65=Tb (solution)-118.1
Tb (solution)=118.1+14.65
=132.75
<span>because p6 will be the group 8. You have to count the 2 electrons from the "s" block that are Group I and Group II
Group I s1
Group II s2
Group III s2 p1
Group IV s2 p2
Group V s2 p3
Group VI s2 p4
Group VII s2 p5
Group VIII s2 p6</span>
Molar mass H₂O = 18.0 g/mol
number of moles :
1.0 / 18.0 => 0.055 moles
1 mole -------------- 6.02 x 10²³ molecules
0.055 moles -------- ? molecules
molecules = 0.055 x ( 6.02 x 10²³) / 1
molecules = 3.311x10²² / 1
= 3.311 x 10²² molecules
hope this helps!