Less water = less weight to make it rise
More water = more weight to make it dive
Answer : The reagent present in excess and remains unreacted is, 
Solution : Given,
Moles of
= 3.00 mole
Moles of
= 2.00 mole
Excess reagent : It is defined as the reactants not completely used up in the reaction.
Limiting reagent : It is defined as the reactants completely used up in the reaction.
Now we have to calculate the limiting and excess reagent.
The balanced chemical reaction is,

From the balanced reaction we conclude that
As, 2 moles of
react with 1 mole of 
So, 3.00 moles of
react with
moles of 
From this we conclude that,
is an excess reagent because the given moles are greater than the required moles and
is a limiting reagent and it limits the formation of product.
Hence, the reagent present in excess and remains unreacted is, 
Explanation:
A physical change is one that alters the physical properties of matter (particularly the form and state).
A chemical change is one in which new kind of matter is formed. It is always accompanied by energy changes (evolution or absorption of energy in form of heat or light or both).
Now, the salient differences between physical and chemical changes;
- Physical changes are easily reversible whereas chemical changes are not easily reversible.
- Physical changes lead to the production of no new kinds of matter whereas chemical changes leads to the production of new kinds of matter.
- Physical changes involves no change in mass whereas chemical changes involves change in mass.
- Physical changes require little energy whereas considerable amount of energy is needed for chemical changes.
Answer:

Explanation:
Hello!
In this case, considering the Gay-Lussac's law which describes the pressure-temperature behavior as a directly proportional relationship by holding the volume as constant, we write:

Whereas solving for the final temperature T2, we get:

Thus, we plug in the given data (temperature in Kelvins) to obtain:

Best regards!
<span>293 grams
The formula for the wavelength of a massive particle is
λ = h/p
where
λ = wavelength
h = Plank constant (6.626070040Ă—10^â’34 J*s)
p = momentum (mass times velocity)
So let's solve for momentum and from there get the mass
λ = h/p
λp = h
p = h/λ
Substitute known values and solve
p = 6.626070040Ă—10^â’34 J*s/3.45Ă—10^-34 m
p = 1.92 J*s/m
Since momentum is the product of mass and velocity, we have
p = M * V
p/V = M
So substitute again, and solve.
p/V = M
1.92 J*s/m / 6.55 m/s = M
1.92 kg*m/s / 6.55 m/s = M
1.92 kg*m/s / 6.55 m/s = M
0.293 kg = M
So the mass is 293 grams</span>