Percentage Weight-in-volume is defined as the <em><u>number of grams of a solute in a 100 ml (milliliters) solution.</u></em>
<u />
<u>Percentage Weight-in-volume</u> can tell us about the <em>degree of concentration of a given solution.</em>
<em><u /></em>
The solute can be <em>crystalline or non-crystalline in nature.</em>
<em></em>
The <u>number of grams of glucose</u> present in a <u>5% glucose solution</u> is 5 grams.
- This question is based on a Percentage Weight-in-volume. The formula states that:
a% of a glucose solution =<u> a grams of glucose in a 100 mL solution</u>
Hence, 5% glucose solution = 5 grams of glucose / 100 mL solution
Therefore, the <u>number of grams of glucose</u> present in a <u>5% glucose solution</u> is 5 grams.
To learn more, visit the link below:
brainly.com/question/8482854
Answer:
the answer is the tropical rain forest
The answer is $2.89.
Since it’s asking for the unit price of one gallon and you have the total ($34.68 and 12 gallons), you would divide $34.68 from 12, which gives you $2.89.
34.68/12 = 2.89
Answer:
1 billion molecules O₂
Explanation:
From my research, a human red blood cell contains approximately 270 million hemoglobin molecules.
A hemoglobin molecule contains four heme groups, <em>each of which has an iron ion forming a coordination complex that carries every dioxygen molecule. </em>Therefore for each hemoglobin molecule, we will have 4 dioxygen molecules. The heme groups are responsible for the transport of every dioxygen and other diatomic gases.
Hence, the number of O₂ molecules in a red blood cell saturated with 100% will be:

So, the correct answer is 1 billion of O₂ molecules.
Have a nice day!
The answer is atomic radii; the size or radii of an atom increases from left to right, versus the ionization energies and electronegativities of atoms which increase from right to left.