The answer is Both result in a change in allele frequencies in the affected population
Genetic drift is a change in the frequency of alleles in a population as a result of random sampling of organisms. I<span>magine you have two different alleles in the population responsible for red and white color of a flower. Their allele frequencies are 0.2 for white flowers and 0.8 for red flowers. After some change in the environment, only white flowers survive. They will reproduce, and in the population, there will be only white flowers. The population for these flowers will increase from 0.2 to 1.
Speaking of gene flow, it is not as dramatic and drastic as genetic drift, but still, it includes a transfer of alleles from one population to another, so there is expected a change in allele frequency.</span>
Answer:
It's simple really—plants get the materials they need to grow cheifly from air and water! Sunlight provides the energy plants need to convert water and carbon dioxide (CO2), a major component in air, to carbohydrates, such as sugars, in a process called photosynthesis. Hope this is what your looking for!
Explanation:
Brainliest please?
Lolololololololololololololol
B because B is the nucleus which is the storage location of DNA
Answer:
B
Explanation:
as it clearly shows on the graph