I'll assume the ODE is

Solve the homogeneous ODE,

The characteristic equation

has roots at
and
. Then the characteristic solution is

For nonhomogeneous ODE (1),

consider the ansatz particular solution

Substituting this into (1) gives

For the nonhomogeneous ODE (2),

take the ansatz

Substitute (2) into the ODE to get

Lastly, for the nonhomogeneous ODE (3)

take the ansatz

and solve for
.

Then the general solution to the ODE is

Answer:
r≈2.39
Step-by-step explanation:
For this problem, let x be the number of children and y for adults. Formulate the equations: 1st equation, x + y = 3,200 and 2nd equation 5x + 9y = 24,000. Re-arrange 1st equation into x = 3200 - y. Then, substitute into 2nd equation, 5(3,200-y) + 9y = 24,000. Then, solve for y. The 16,000 - 5y + 9y = 24000. Final answer is, y = 2000 adults went to watch the movie.