If you apply the or both
Only 1 of the students would need to know the "or both", therefore maximizing the remaining amount of students you can put in.
Gerald, let's call him, knows French AND German, so there's only one less student that knows french and german. Gerald is 1 student.
MAXIMUM:
There are now 14 monolinguistic French speakers and 16 monolinguistic German's, 30 students + Gerald=31.
Minimum:
As a bonus, the minimum is 15 students knowing french AND German and only 2 monolinguistic German speakers, so 17.
Answers:
x = -8/5 or x = 8/5
Sum of the first ten terms where all terms are positive = 4092
========================================================
Explanation:
r = common ratio
- first term = 4
- second term = (first term)*(common ratio) = 4r
- third term = (second term)*(common ratio) = (4r)*r = 4r^2
The first three terms are: 4, 4r, 4r^2
We're given that the sequence is: 4, 5x, 16
Therefore, we have these two equations
Solve the second equation for r and you should find that r = -2 or r = 2 are the only possible solutions. If r = -2, then 5x = 4r solves to x = -8/5. If r = 2, then 5x = 4r solves to x = 8/5.
-----------------
To find the sum of the first n terms, we use this geometric series formula
Sn = a*(1 - r^n)/(1 - r)
We have
- a = 4 = first term
- r = 2, since we want all the terms to be positive
- n = 10 = number of terms to sum up
So,
Sn = a*(1 - r^n)/(1 - r)
S10 = 4*(1 - 2^10)/(1 - 2)
S10 = 4*(1 - 1024)/(-1)
S10 = 4*(-1023)/(-1)
S10 = 4092
Answer:
a=
b=
Step-by-step explanation:
Here
is like the
in the general formula.
So we can write
as:
We can also write
as:
Therefore:
a³=
b²=
Answer:
150*5=?
Step-by-step explanation: