The empirical formula is a formula of a compound showing the proportion of each element involved in the compounds but it does not represent the total number of atoms in the compound. It is the lowest number of ratio between the elements in the compound. In order, to determine the actual number of the atoms or the molecular formula of the compounds, we make use of the molar mass of the compound.
<span>To
determine the molecular formula, we multiply a value to the empirical formula.
Then, calculate the molar mass and see whether it is equal to the one
given (104.1 g/ mol). From the choices, the only valid options are b, d and e.
</span> molar mass
1 CH 13.02
8 C8H8 104.16
6 C6H6 78.12
Therefore the correct answer is option B.
Answer: Rate law is, R= 6.02[A]¹[B]²
Explanation in attached image
Answer:
C.) No. of electrons
Explanation:
A.) is incorrect. The atomic number represents the number of protons in an element. Nitrogen (N) and sodium (Na) always have a differing amount of protons.
B.) is incorrect. The mass number represents the number of protons and neutrons in an element. The number of neutrons and protons are specific to each element (disregarding isotopes). When elements ionize, these amounts are not altered.
C.) is correct. When an element becomes an ion, the number of electrons change. When nitrogen gains 3 electrons and sodium loses 1 electron, they end up having the same number of electrons (10).
D.) is incorrect. When elements ionize, the number of neutrons does not change. The only way two different elements could have the same number of neutrons is if at least one of the elements is an isotope. Isotopes are two or more atoms of the same element that differ in their amounts of neutrons.