It's difficult to make out what the force and displacement vectors are supposed to be, so I'll generalize.
Let <em>θ</em> be the angle between the force vector <em>F</em> and the displacement vector <em>r</em>. The work <em>W</em> done by <em>F</em> in the direction of <em>r</em> is
<em>W</em> = <em>F</em> • <em>r</em> cos(<em>θ</em>)
The cosine of the angle between the vectors can be obtained from the dot product identity,
<em>a</em> • <em>b</em> = ||<em>a</em>|| ||<em>b</em>|| cos(<em>θ</em>) ==> cos(<em>θ</em>) = (<em>a</em> • <em>b</em>) / (||<em>a</em>|| ||<em>b</em>||)
so that
<em>W</em> = (<em>F</em> • <em>r</em>)² / (||<em>F</em>|| ||<em>r</em>||)
For instance, if <em>F</em> = 3<em>i</em> + <em>j</em> + <em>k</em> and <em>r</em> = 7<em>i</em> - 7<em>j</em> - <em>k</em> (which is my closest guess to the given vectors' components), then the work done by <em>F</em> along <em>r</em> is
<em>W</em> = ((3<em>i</em> + <em>j</em> + <em>k</em>) • (7<em>i</em> - 7<em>j</em> - <em>k</em>))² / (√(3² + 1² + 1²) √(7² + (-7)² + (-1)²))
==> <em>W</em> ≈ 5.12 J
(assuming <em>F</em> and <em>r</em> are measured in Newtons (N) and meters (m), respectively).
Answer:
This question is solved in detail below. Please refer to the attachment for better understanding of an Ellipse.
Step-by-step explanation:
In this question, there is a spelling mistake. This is vertices not verticles.
So, I have attached a diagram of an ellipse in which it is clearly mentioned where are the vertices of an ellipse.
Vertices of an Ellipse: There are two axes in any ellipse, one is called major axis and other is called minor axis. Where, minor is the shorter axis and major axis is the longer one. The places or points where major axis and minor axis ends are called the vertices of an ellipse. Please refer to the attachment for further clarification.
Equations of an ellipse in its standard form:
This is the case when major axis the longer one is on the x-axis centered at an origin.

This is the case when major axis the longer one is on the y-axis centered at an origin.
where major axis length = 2a
and minor axis length = 2b
Answer:
7 teams remaining a person
Step-by-step explanation:
29/4 = 7 remainder 1
3 × ( p + 4m ) + 8 and 3p + 4 × ( 3m + 2 ) are the equivalent expressions.