Answer:
<u>108°</u>
Step-by-step explanation:
Formula :
<u>Degree Measure = Arc length / radius x 180/π</u>
Solving :
Degree Measure = 3π/5 x 180/π
Degree Measure = 3 x 36
Degree Measure = <u>108°</u>
<u>Question 1 solution:</u>
You have two unknowns here:
Let the Water current speed = W
Let Rita's average speed = R
We are given <em>two </em>situations, where we can form <em>two equations</em>, and therefore solve for the <em>two unknowns, W, R</em>:
Part 1) W→ , R←(against current, upstream)
If Rita is paddling at 2mi/hr against the current, this means that the current is trying to slow her down. If you look at the direction of the water, it is "opposing" Rita, it is "opposite", therefore, our equation must have a negative sign for water<span>:
</span>R–W=2 - equation 1
Part 2) W→ , R<span>→</span>(with current)
Therefore, R+W=3 - equation 2
From equation 1, W=R-2,
Substitute into equation 2.
R+(R–2)=3
2R=5
R=5/2mi/hr
So when W=0 (still), R=5/2mi/hr
Finding the water speed using the same rearranging and substituting process:
1... R=2+W
2... (2+W)+W=3
2W=1
W=1/2mi/hr
Answer:
B
Step-by-step explanation:
You'll need to give a bit more information for the question to be answered. You can only calculate the percentage of error if you know what the mass of the substance *should be* and what you've *measured* it to be.
In other words, if a substance has a mass of 0.55 grams and you measure it to be 0.80 grams, then the percent of error would be:
percent of error = { | measured value - actual value | / actual value } x 100%
So, in this case:
percent of error = { | 0.80 - 0.55 | / 0.55 } x 100%
percent of error = { | 0.25 | / 0.55 } x 100%
percent of error = 0.4545 x 100%
percent of error = 45.45%
So, in order to calculate the percent of error, you'll need to know what these two measurements are. Once you know these, plug them into the formula above and you should be all set!