1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bumek [7]
3 years ago
6

A particle moves according to a law of motion s = f(t), t ≥ 0, where t is measured in seconds and s in feet. f(t) = 0.01t4 − 0.0

2t3 (a) find the velocity at time t (in ft/s). v(t) = .04t3−.06t2 (b) what is the velocity after 1 second(s)? v(1) = -.02 ft/s (c) when is the particle at rest? t = s (smaller value) t = s (larger value) (d) when is the particle moving in the positive direction? (enter your answer using interval notation.) (e) find the total distance traveled during the first 12 seconds. (round your answer to two decimal places.) ft (f) find the acceleration at time t (in ft/s2). a(t) = find the acceleration after 1 second(s). a(1) = ft/s2
Physics
1 answer:
ivolga24 [154]3 years ago
7 0
Since you solved a and b I will start with part c.
Part C
To answer this question we need to find zeros of a velocity function:
v(t)=0.04t^3-0.06t^2
We can factor this polynomial:
v(t)=0.04t^3-0.06t^2=t^2(0.04t-0.06)
Now it's pretty easy to find zeros. This function will be equal to zero when any of the factors are equal zero. 
t^2=0;\\ 0.04t-0.06=0
We solve these two equations and we get our zeros:
t_1=0; t_2=\frac{3}{2}
The particle is at rest at t=0 and t=3/2.
Part D
To solve this we need to determine when our velocity function is greater than zero. We will use factored form. 
We determine when each factor is greater than zero and with that information, we build the following table:
\centering \label{my-label} \begin{tabular}{lllll} Range & -\infty & 0 & 3/2 & +\infty \\ t^2 & - & + & + & + \\ 0.04t-0.06 & - & - & + & + \\ t^2 (0.04t-0.06) & + & - & + & + \end{tabular}
We can see, from the table, that our function is positive when - \infty < t and t>3/2.
That is the range in which particle is moving in positive direction.
Part E
We know that distance traveled is given with:
s(t)=0.01t^4 - 0.02t^3
We simply plug in t=12 to find total distance traveled:
s(12)=0.01(12)^4 - 0.02(12)^3=172.80 ft
Part F
We know that acceleration is defined as a rate of change of velocity.
We find acceleration by taking the first derivative of velocity with respect to time.
a(t)=\frac{dv}{dt}=(0.04t^3-0.06t^2)'=0.12t^2-0.12t
To find acceleration after 1 second we simply plug in t=1s in above equation:
a(1)=0.12-0.12=0


You might be interested in
Suppose a particle is accelerated through space (no gravity) by a 10 N force. Suddenly the particle encounters a second force of
iren2701 [21]

please dont mind me just looking for points

3 0
3 years ago
Which substance is a combination of different atoms?
defon

Every chemical "compound" is. Some examples of compounds include ...

Salt
Carbon dioxide
Alcohol
Water
DNA

7 0
3 years ago
Suppose a small planet is discovered that is 16 times as far from the Sun as the Earth's distance is from the Sun. Use Kepler's
mamaluj [8]

Answer:

23376 days

Explanation:

The problem can be solved using Kepler's third law of planetary motion which states that the square of the period T of a planet round the sun is directly proportional to the cube of its mean distance R from the sun.

T^2\alpha R^3\\T^2=kR^3.......................(1)

where k is a constant.

From equation (1) we can deduce that the ratio of the square of the period of a planet to the cube of its mean distance from the sun is a constant.

\frac{T^2}{R^3}=k.......................(2)

Let the orbital period of the earth be T_e and its mean distance of from the sun be R_e.

Also let the orbital period of the planet be T_p and its mean distance from the sun be R_p.

Equation (2) therefore implies the following;

\frac{T_e^2}{R_e^3}=\frac{T_p^2}{R_p^3}....................(3)

We make the period of the planet T_p the subject of formula as follows;

T_p^2=\frac{T_e^2R_p^3}{R_e^3}\\T_p=\sqrt{\frac{T_e^2R_p^3}{R_e^3}\\}................(4)

But recall that from the problem stated, the mean distance of the planet from the sun is 16 times that of the earth, so therefore

R_p=16R_e...............(5)

Substituting equation (5) into (4), we obtain the following;

T_p=\sqrt{\frac{T_e^2(16R_e)^3}{(R_e^3}\\}\\T_p=\sqrt{\frac{T_e^24096R_e^3}{R_e^3}\\}

R_e^3 cancels out and we are left with the following;

T_p=\sqrt{4096T_e^2}\\T_p=64T_e..............(6)

Recall that the orbital period of the earth is about 365.25 days, hence;

T_p=64*365.25\\T_p=23376days

4 0
3 years ago
You need to design a photodetector that can respond to the entire range of visible light. True or False
Rasek [7]

Answer: True

Explanation:

A photo detector that can respond to the entire rang of visible light can be design, it is true.

Photo detector is a device in an optical receiver which receives optical signals and convert it to electric signal. It is the key device position in front of the optical receiver.

7 0
3 years ago
20. Consider a model steel bridge that is 1/100 the exact scale of the real bridge that is to be built. a. If the model bridge w
Veseljchak [2.6K]
The model bridge captures all the structural attributes of the real bridge, at a reduced scale.

Part a.
Note that volume is proportional to the cube of length. Therefore the actual bridge will have 100^3 = 10^6 times the mass of the model bridge.

Because the model bridge weighs 50 N, the real bridge weighs
(50 N)*10^6 = 50 MN.

Part b.
The model bridge matches the structural characteristics of the actual bridge.
Therefore the real bridge will not sag either.
6 0
3 years ago
Other questions:
  • Kayla drew a diagram to compare convex and concave lenses. Which labels belong in the areas marked X, Y, and Z? X: Causes light
    6·1 answer
  • What is the magnitude of the acceleration of an electron at a point where the electric field has magnitude 6377 n/c and is direc
    15·1 answer
  • What are the preserved remains of organisms?
    12·1 answer
  • Reproducibility is the ability of data to be .<br>Published<br>Duplicated<br>Changed<br>Invalidated
    5·2 answers
  • A box is sitting on the ground and weighs 100 kg and the coefficient of friction is 0.23. Is it easier to push by applying the f
    7·1 answer
  • calculate the diameter of the fifteen orbit of the hydrogen atom if the diameter of the innermost orbit is 1.06 A
    9·2 answers
  • A block of mass m1 = 4 kg is moving at 4 m/s and collides with a block of mass m2 = 2 kg, which is moving at 5 m/s in the opposi
    10·1 answer
  • A mass resting on a horizontal, frictionless surface is attached to one end of a spring; the other end is fixed to a wall. It ta
    14·1 answer
  • Chromium has the electron configuration 4s1 3d5 beyond Argon. What are the L and S values?
    8·1 answer
  • Do allergen-free pillows cause fewer germs to grow?
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!