The car heads east at an average speed of 50 miles per hour from the intersection point towards East. The truck heads east at an average speed of 60 miles per hour from the intersection point towards South.
The distance of car from the intersection point after t hours is .
The distance of truck from the intersection point after t hours is .
Since these distances are perpendicular to each other, distance apart d (in miles) at the end of t hours is
Thus the distance apart is
To answer this question, we should know the formula for the terminal velocity. The formula is written below:
v = √(2mg/ρAC)
where
m is the mass
g is 9.81 m/s²
ρ is density
A is area
C is the drag coefficient
Let's determine the mass, m, to be density*volume.
Volume = s³ = (1 cm*1 m/100 cm)³ = 10⁻⁶ m³
m = (1.6×10³ kg/m³)(10⁻⁶ m³) = 1.6×10⁻³ kg
A = (1 cm * 1 m/100 cm)² = 10⁻⁴ m²
v = √(2*1.6×10⁻³ kg*9.81 m/s²/1.6×10³ kg/m³*10⁻⁴ m²*0.8)
<em>v = 0.495 m/s</em>
The three main constructive forces are crustal deformation, volcanic eruptions, and deposition of sediment.
Answer:
Maximum Tension=224N
Minimum tension= 64N
Explanation:
Given
mass =8 kg
constant speed = 6m/s .
g=10m/s^2
Maximum Tension= [(mv^2/ r) + (mg)]
Minimum tension= [(mv^2/ r) - (mg)]
Then substitute the values,
Maximum Tension= [8 × 6^2)/2 +(8×9.8)] = 224N
Minimum tension= [8 × 6^2)/2 -(8×9.8)]
=64N
Hence, Minimum tension and maximum Tension are =64N and 2224N respectively
Answer:
Only the perpendicular component of gravity is responsible for the rotation because wind points toward the pivot.
Explanation: