So, the angular frequency of the blades approximately <u>36.43π rad/s</u>.
<h3>Introduction</h3>
Hi ! Here I will discuss about the angular frequency or what is also often called the angular velocity because it has the same unit dimensions. <u>Angular frequency occurs, when an object vibrates (either moving harmoniously / oscillating or moving in a circle)</u>. Angular frequency can be roughly interpreted as the magnitude of the change in angle (in units of rad) per unit time. So, based on this understanding, the angular frequency can be calculated using the equation :

With the following condition :
= angular frequency (rad/s)
= change of angle value (rad)- t = interval of the time (s)
<h3>Problem Solving</h3>
We know that :
= change of angle value = 1,000 revolution = 1,000 × 2π rad = 2,000π rad/s >> Remember 1 rev = 2π rad/s.- t = interval of the time = 54.9 s.
What was asked :
= angular frequency = ... rad/s
Step by step :



<h3>Conclusion :</h3>
So, the angular frequency of the blades approximately 36.43π rad/s.
Answer:
B) A planet's speed as it moves around the sun will not be the same in six months.
Explanation:
A planet's speed as it moves around the sun will not be the same in six months, is a statement that CANNOT be supported by Kepler's laws of planetary motion.
Newton's law of universal gravitation states that a particle attracts every other particle in the universe using a force that is directly proportional to the product of their masses and inversely proportional to the square of the distance between their centers
Answer:
0 J
Explanation:
= Work done on the satellite in circular orbit about earth by earth
= Force on gravity on satellite by earth
= displacement of the satellite
= Angle between the force on gravity and displacement = 90
We know that, Work done is given as

Answer:
<h2>0.67 m/s²</h2>
Explanation:
The acceleration of an object given it's mass and the force acting on it can be found by using the formula

f is the force
m is the mass
From the question we have

We have the final answer as
<h3>0.67 m/s²</h3>
Hope this helps you