<span>When the fuel of the rocket is consumed, the acceleration would be zero. However, at this phase the rocket would still be going up until all the forces of gravity would dominate and change the direction of the rocket. We need to calculate two distances, one from the ground until the point where the fuel is consumed and from that point to the point where the gravity would change the direction.
Given:
a = 86 m/s^2
t = 1.7 s
Solution:
d = vi (t) + 0.5 (a) (t^2)
d = (0) (1.7) + 0.5 (86) (1.7)^2
d = 124.27 m
vf = vi + at
vf = 0 + 86 (1.7)
vf = 146.2 m/s (velocity when the fuel is consumed completely)
Then, we calculate the time it takes until it reaches the maximum height.
vf = vi + at
0 = 146.2 + (-9.8) (t)
t = 14.92 s
Then, the second distance
d= vi (t) + 0.5 (a) (t^2)
d = 146.2 (14.92) + 0.5 (-9.8) (14.92^2)
d = 1090.53 m
Then, we determine the maximum altitude:
d1 + d2 = 124.27 m + 1090.53 m = 1214.8 m</span>
The work done when a spring is stretched from 0 to 40cm is 4J.
What is work done?
Work done is the magnitude of force multiplied by displacement of an object. It is also the amount of energy transferred to an object when work is done on that.
The work done on the spring to stretch to 40cm is,
F = kx
where F is force, k is force constant.
k = F / x = 10 N / 20 * 10^-2 m = 50 N/m
W = 0.5 * k * (x)^2
where W = work done, k = force constant.
W = 0.5 x 50 x (40 x 10^-2)^2 = 4 J.
Therefore, the work done on the spring when it is stretched to 40cm is 4J.
To learn more about work done click on the given link brainly.com/question/25573309
#SPJ4
C a meter stick with only centimeters
D a ruler with millimeters and centimeters
D would be to the nearest half milimeter. Take some time to measure with a 2 inch ruler. Would you really need to know the length to half a mil ?
Fossil fuels <span>are </span>non-renewable sources of energy<span> as they are derived from pre-historic fossils and it is certain that they will deplete in the near future. </span><span>
The bigegst disadvantage of the fossil fuels is that they release carbon dioxide, nitrogen dioxide, sulfur dioxide, carbon monoxide </span><span> gasses, which lead to </span>serious environmental issues<span> such as </span>air pollution. They are <span>responsible for the </span>global warming<span>..
</span><span>Besides the environmental effect, carbon dioxide can also cause serious health complications such as chronic asthma, low lung functioning, chronic bronchitis..</span>
Answer:
(a) f= 622.79 Hz
(b) f= 578.82 Hz
Explanation:
Given Data
Frequency= 600 Hz
Distance=1.0 m
n=120 rpm
Temperature =20 degree
Before solve this problem we need to find The sound generator moves on a circular with tangential velocity
So
Speed of sound is given by
c = √(γ·R·T/M)
............in an ideal gas
where γ heat capacity ratio
R universal gas constant
T absolute temperature
M molar mass
The speed of sound at 20°C is
c = √(1.40 ×8.314472J/molK ×293.15K / 0.0289645kg/mol)
c= 343.24m/s
The sound moves on a circular with tangential velocity
vt = ω·r.................where
ω=2·π·n
vt= 2·π·n·r
vt= 2·π · 120min⁻¹ · 1m
vt= 753.6 m/min
convert m/min to m/sec
vt= 12.56 m/s
Part A
For maximum frequency is observed
v = vt
f = f₀/(1 - vt/c )
f= 600Hz / (1 - (12.56m/s / 343.24m/s) )
f= 622.789 Hz
Part B
For minimum frequency is observed
v = -vt
f = f₀/(1 + vt/c )
f= 600Hz / (1 + (12.56m/s / 343.24m/s) )
f= 578.82 Hz