Uranium-238 decays<span> by alpha emission </span>into<span> thorium-234, which itself </span>decays<span> by beta emission to protactinium-234, which </span>decays<span> by beta emission to </span>uranium<span>-234, and so on. The various </span>decay<span> products, (sometimes referred to as “progeny” or “daughters”) form a series starting at </span>uranium-238<span>.</span>
Answer: 5000N
Explanation:
The basic principle of a circular orbit is that Fg = m × ac, so as we have the mass and the centripetal acceleration (also called normal acceleration) we just have to operate. Fg = 1000kg × 5m/s² = 5000N
Answer:
∑Fy = 0, because there is no movement, N = m*g*cos (omega)
Explanation:
We can solve this problem with the help of a free body diagram where we show the respective forces in each one of the axes, y & x. The free-body diagram and the equations are in the image attached.
If the product of mass by acceleration is zero, we must clear the normal force of the equation obtained. The acceleration is equal to zero because there is no movement on the Y-axis.
Answer:
The mass of silver that will occupy a volume of 87.75 mL is 920.5 grams.
Explanation:
Density is defined as the property that matter, whether solid, liquid or gas, has to compress into a given space. In other words, density is a quantity that allows us to measure the amount of mass in a certain volume of a substance. Then, the expression for the calculation of density is the quotient between the mass of a body and the volume it occupies:

So the density of silver is 10.49 g / mL indicates that 10.49 g occupies a volume of 1 mL. Then a rule of three can be applied in the following way: if in 1 mL a mass of 10.49 g is occupied, in 87.75 mL how much mass will it occupy?

mass= 920.5 g
<u><em>
The mass of silver that will occupy a volume of 87.75 mL is 920.5 grams.</em></u>
Q = heat energy , m=mass , c=specific heat , delta T= change in temperature
as you know heat is a form of energy which is <em>usually</em> measured in Joules according to the SI. and also we usually use kilograms for mass.
so you need to know the mass, specific heat, and change in temperature in order to find out the heat energy :)