Answer:
The forms of energy involved are
1. Kinetic energy
2. Potential energy
Explanation:
The system consists of a ball initially at rest. The ball is pulled down from its equilibrium position (this builds up its potential energy) and then released. The released ball oscillates due to a continuous transition between kinetic and potential energy.
Since my givens are x = .550m [Vsub0] = unknown
[Asubx] = =9.80
[Vsubx]^2 = [Vsub0x]^2 + 2[Asubx] * (X-[Xsub0]
[Vsubx]^2 = [Vsub0x]^2 + 2[Asubx] * (X-[Xsub0])
Vsubx is the final velocity, which at the max height is 0, and Xsub0 is just 0 as that's where it starts so I just plug the rest in
0^2 = [Vsub0x]^2 + 2[-9.80]*(.550)
0 = [Vsub0x]^2 -10.78
10.78 = [Vsub0x]^2
Sqrt(10.78) = 3.28 m/s
Crude oil has parts of decomposed dinosaurs and plants from millions of years ago. When the sun gave energy to the plants for their growth, the dinasours ate them which is now is stored in the oil today. So the sun gave energy to plants, dinosaurs ate them, pasted away and decomposed, then we drill and use it as oil.
Direction of resultant force in circular motion is directed towards the center of the circle. Hence vector B is the direction of the resultant force.
Answer:
They can be rank in the following way:
- A radio signal from an AM radio station at 680 kHz on the dial
- Radiation from an FM radio station at 93.1 MHz on the dial
- The red light of a light-emitting diode, such as in a calculator
- The yellow light from sodium vapor streetlights
- The gamma rays produced by a radioactive nuclide used in medical
Explanation:
The electromagnetic spectrum is the distribution of radiation due to the different frequencies at which it radiates and its different intensities, that radiation is formed by electromagnetic waves, which are transverse waves formed by an electric field and a magnetic field perpendicular to it.
Radiation is distributed along that electromagnetic spectrum according to the wavelength or frequency.
Highest frequencies
X-rays
Ultraviolet rays
Visible region
Lower frequencies
Infrared
Microwave
Radio waves
Radio waves and the visible region (yellow light, red light) are part of the electromagnetic spectrum, any radiation of that electromagnetic spectrum has a speed of 3.00x10^{8}m/s in vacuum.
However, the following equation relates the velocity, the frequency, and the wavelength:
(1)
(2)
It can be see in equation 2 that the frequency and the wavelength are inversely proportional (when the frequency increases the wavelength decreases).
Therefore, for what was already discussed, they can be rank in the next way:
- A radio signal from an AM radio station at 680 kHz on the dial
- Radiation from an FM radio station at 93.1 MHz on the dial
- The red light of a light-emitting diode, such as in a calculator
- The yellow light from sodium vapor streetlights
- The gamma rays produced by a radioactive nuclide used in medical
Summary:
In the case of the radio waves can be used:
Case for
:
![\lambda = \frac{3x10^{8}m/s}{93100000s^{-1}}](https://tex.z-dn.net/?f=%5Clambda%20%3D%20%5Cfrac%7B3x10%5E%7B8%7Dm%2Fs%7D%7B93100000s%5E%7B-1%7D%7D)
![\lambda = 3.22m](https://tex.z-dn.net/?f=%5Clambda%20%3D%203.22m)
Case for
:
![\lambda = \frac{3x10^{8}m/s}{680000s^{-1}}](https://tex.z-dn.net/?f=%5Clambda%20%3D%20%5Cfrac%7B3x10%5E%7B8%7Dm%2Fs%7D%7B680000s%5E%7B-1%7D%7D)
![\lambda = 441.17m](https://tex.z-dn.net/?f=%5Clambda%20%3D%20441.17m)