(s÷t) - r is the correct expression.
Answer:
Step-by-step explanation:
The given function : 
[
]
[
]
Now , Differentiate both sides with respect to x , we will get
(By Chain rule)
[Note :
]

[
]

Hence, the derivative of the given function is
.
Answer:

Step-by-step explanation:
Distance = 
Here X is -3
So,
Point Y = -3 + 6.5 = 3.5
![\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Crule%5B225%5D%7B225%7D%7B2%7D)
Hope this helped!
<h3>~AH1807</h3>
The given complex number is ⇒ z = a + b i
The absolute value of z = √( a² + b² ) = 3.28
So, we will check which of the options will give 3.28
<span>( A) IF ⇒⇒ a=1.5 and b=1.7
</span>
<span>∴ √( a² + b² ) = √( 1.5² + 1.7²) = √5.14 ≈ 2.27
</span>
===================================
<span>(B) IF ⇒⇒ a=1.5 and b=3.3
</span>
<span>∴ √( a² + b² ) = √(1.5² + 3.3²) = √13.14 ≈ 3.62
</span>
====================================
<span>(C) IF ⇒⇒ a=1.7 and b=2.8
</span>
<span>∴ √( a² + b² ) = √(1.7² + 2.8²) = √10.73 ≈ 3.28
</span>
====================================
<span>(D) IF ⇒⇒ a=2.8 and b=3.3
</span>
∴ √( a² + b² ) = √(2.8² + 3.3²) = √18.73 ≈ 4.33
=====================================
So, the correct answer is option (C) <span>a=1.7,b=2.8</span>