Answer:
The length of segment QM' = 6
Step-by-step explanation:
Given:
Q is the center of dilation
Pre-image (original image) = segment LM
New image = segment L'M'
The length of LQ = 4
The length of QM = 3
The length of LL' = 4
The original image was dilated with scale factor = 2
QM' = ?
To determine segment QM', first we would draw the diagram obtained from the given information.
Find attached the diagram
When a figure is dilated, we would have similar shape in thus cars similar triangles.
Segment L'M' = scale factor × length of LM
Let LM = x
L'M' = 2x
Using similar triangles theorem, ratio of their corresponding sides are equal.
QM/LM = QM'/L'M'
3/x = QM'/2x
6x = QM' × x
Q'M' = 6
The length of segment QM' = 6
Answer:
Step-by-step explanation:
5 times 2 equales 10 divided by 40 eqauls 4 times 2 equals 8
The total number of choices Jalen has is six
Answer:
0
Step-by-step explanation:
<h2><em>2</em><em>x</em><em>-</em><em>6</em><em>+</em><em>1</em><em>5</em><em>x</em><em>+</em><em>5</em><em>-</em><em>1</em><em>6</em><em>x</em><em>=</em><em>x</em></h2>
<h2><em>2</em><em>x</em><em>+</em><em>1</em><em>5</em><em>x</em><em>-</em><em>1</em><em>6</em><em>x</em><em>-</em><em>x</em><em>=</em><em>6</em><em>-</em><em>5</em></h2><h2 /><h2 /><h2><em>0</em><em>×</em><em>x</em><em>=</em><em>1</em></h2><h2 /><h2 /><h2 /><h2><em>x</em><em>=</em><em>1</em><em>÷</em><em>0</em></h2><h2 /><h2 /><h2><em>x</em><em>=</em><em>0</em></h2>
Step-by-step explanation:
Hey, there!
Here,
Given that:

we need to find factor,
As it is in a^2-b^2 form as per its factor (a+b) (a-b), keeping same formula here,
25x^2 means (5x)^2
and 4 means 2^2
Now, it would be,


Therefore, it's factor would be (5x+2)(5x-2).
<em><u>Hope it helps</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>