Answer:
See below
Step-by-step explanation:
It has something to do with the<em> </em><u><em>Weierstrass substitution</em></u>, where we have

First, consider the double angle formula for tangent:

Therefore,

Once the double angle identity for sine is

we know
, but sure, we can derive this formula considering the double angle identity

Recall

Thus,
Similarly for cosine, consider the double angle identity
Thus,

Hence, we showed 
======================================================
![5\cos(x) =12\sin(x) +3, x \in [0, 2\pi ]](https://tex.z-dn.net/?f=5%5Ccos%28x%29%20%3D12%5Csin%28x%29%20%2B3%2C%20x%20%5Cin%20%5B0%2C%202%5Cpi%20%5D)
Solving





Just note that

and
is not defined for 
It would be 4.0
please can i have a brailiest
Answer:
and
.
Step-by-step explanation:
If we have to different functions like the ones attached, one is a parabolic function and the other is a radical function. To know where
, we just have to equalize them and find the solution for that equation:

So, applying the zero product property, we have:
![x=0\\x^{3}-1=0\\x^{3}=1\\x=\sqrt[3]{1}=1](https://tex.z-dn.net/?f=x%3D0%5C%5Cx%5E%7B3%7D-1%3D0%5C%5Cx%5E%7B3%7D%3D1%5C%5Cx%3D%5Csqrt%5B3%5D%7B1%7D%3D1)
Therefore, these two solutions mean that there are two points where both functions are equal, that is, when
and
.
So, the input values are
and
.
Answer:
sorry i cannot do this
Step-by-step explanation:
i am sorry