Answer & Explanation:
a)
Lenz's law states that the direction of induced electric current is always such that, it opposes the change in magnetic flux.
In a drop ride, the hub on which we sit and are hung to is an electromagnet and there are many such magnets mounted on the columns of the support. what happens is these electromagnets (in support) generate a repulsive magnetic field with respect to the field generated by the hub solenoids. this results in lift generation till the top of ride. reaching the top, the bar solenoids are at their maximum repulsive force. Then the solenoids in column are set current less means electric supply is cut off. this makes you fall under the effect of gravity. by the time you are half way down, column solenoids are turned on again. As the hub solenoid approaches every single electromagnet in supporting columns. Due to change in magnetic field (with respect to lenz's law) an opposing current induces further providing resistance to the fall, this continues until the ride comes to rest completely. This is how it works.
c) In addition, highly compressive springs, dampers, viscous dampers, etc. could be used in its place.
but the above listed cannot provide a differential braking,
have a limited lifecycle,
will provide resistance during lift also,
require higher maintenance
If a molecule is found to have four hybrid sp3 then we say that it has a <span>tetrahedral molecular geometry. thsi is the correct term to define this type of molecules. So your option would be C. Hope this is useful</span>
Your answer is ''Uniform''.
Hope this helps :)
Answer:
h = 9.57 seconds
Explanation:
It is given that,
Initial speed of Kalea, u = 13.7 m/s
At maximum height, v = 0
Let t is the time taken by the ball to reach its maximum point. It cane be calculated as :




t = 1.39 s
Let h is the height reached by the ball above its release point. It can be calculated using second equation of motion as :

Here, a = -g


h = 9.57 meters
So, the height attained by the ball above its release point is 9.57 meters. Hence, this is the required solution.