Answer:
v = 719.2 m / s and a = 83.33 m / s²
Explanation:
This is a rocket propulsion system where the system is made up of the rocket plus the ejected mass, where the final velocity is
v - v₀ =
ln (M₀ / M)
where v₀ is the initial velocity, v_{e} the velocity of the gases with respect to the rocket and M₀ and M the initial and final masses of the rocket
In this case, if fuel burns at 75 kg / s, we can calculate the fuel burned for the 10 s
m_fuel = 75 10
m_fuel = 750 kg
As the rocket initially had a mass of 3000 kg including 1000 kg of fuel, there are still 250 kg, so the mass of the rocket minus the fuel burned is
M = 3000 -750 = 2250 kg
let's calculate
v - 0 = 2500 ln (3000/2250)
v = 719.2 m / s
To calculate the acceleration, let's use the concept of the rocket thrust, which is the force of the gases on it. In the case of the rocket, it is
Push = v_{e} dM / dt
let's calculate
Push = 2500 75
Push = 187500 N
If we use Newton's second law
F = m a
a = F / m
let's calculate
a = 187500/2250
a = 83.33 m / s²
Rock is completely immersed in hot water. By the second law of thermodynamics, thermal energy or heat is transferred from substance with higher temperature to substance with lower temperature until they come to thermal equilibrium i.e. both at same temperature.
It is given here that rock is at 20°C which is at lower temperature than water at 80°C. ∴Heat or thermal energy flows from water to rock. So, right choice is-
A. The water gives the rock thermal energy and gets no thermal energy in return.
Answer:
126000 J
Explanation:
Applying,
Q = cm(t₂-t₁).................. Equation 1
Where Q = Amount of heat, c = specifc heat capacity of water, m = mass of water, t₁ = Initial temperature, t₂ = Final temperature.
From the question,
Given: m = 2 kg, t₁ = 25°C, t₂ = 40°C
Constant: c = 4200 J/kg.°C
Substitute these value into equation 1
Q = 2×4200(40-25)
Q = 2×4200×15
Q = 126000 J
The last one is correct (D)