Basically when frozen water/ice crystals high in the atmosphere collect water vapor molecules they grow. They are sometimes supplied by microscopic cloud droplets.
Answer:

Explanation:
Since the <em>rate constant</em> has units of <em>s⁻¹</em>, you can tell that the order of the reaction is 1.
Hence, the rate law is:
![r=d[A]/dt=-k[A]](https://tex.z-dn.net/?f=r%3Dd%5BA%5D%2Fdt%3D-k%5BA%5D)
Solving that differential equation yields to the well known equation for the rates of a first order chemical reaction:
![[A]=[A]_0e^{-kt}](https://tex.z-dn.net/?f=%5BA%5D%3D%5BA%5D_0e%5E%7B-kt%7D)
You know [A]₀, k, and t, thus you can calculate [A].
![[A]=0.548M\times e^{-3.6\cdot 10^{-4}/s\times99.2s}](https://tex.z-dn.net/?f=%5BA%5D%3D0.548M%5Ctimes%20e%5E%7B-3.6%5Ccdot%2010%5E%7B-4%7D%2Fs%5Ctimes99.2s%7D)
![[A]=0.529M](https://tex.z-dn.net/?f=%5BA%5D%3D0.529M)
Two independent variables could change at the same time, and you would not know which variable affected the dependent variable
Answer:
A simple example of decomposition reaction is hydrolysis of water where a water molecule is broken down into hydrogen and oxygen gas.
Answer: For the elementary reaction
the molecularity of the reaction is 2, and the rate law is rate = ![k[NO_3]^1[CO]^1](https://tex.z-dn.net/?f=k%5BNO_3%5D%5E1%5BCO%5D%5E1)
Explanation:
Order of the reaction is defined as the sum of the concentration of terms on which the rate of the reaction actually depends. It is the sum of the exponents of the molar concentration in the rate law expression.
Elementary reactions are defined as the reactions for which the order of the reaction is same as its molecularity and order with respect to each reactant is equal to its stoichiometric coefficient as represented in the balanced chemical reaction.
Molecularity of the reaction is defined as the number of atoms, ions or molecules that must colloid with one another simultaneously so as to result into a chemical reaction. Thus it can never be fractional.
For elementary reaction
, molecularity is 2 and rate law is ![rate=k[NO_3]^1[CO]^1](https://tex.z-dn.net/?f=rate%3Dk%5BNO_3%5D%5E1%5BCO%5D%5E1)